Никель общая характеристика. Основы металлургии никеля. Формы нахождения металла

Взаимодействия никеля в организме

Главный источник поступления никеля в человеческий организм – это еда и вода. Из пищи усваивается до 10% никеля, из воды он всасывается быстрее и полнее - абсорбция вещества увеличивается до 25%. Соляная кислота уже в желудке начинает воздействовать на никель, способствуя его всасыванию в кровь, остатки вещества усваиваются в тонком кишечнике. Далее никель вступает в соединения с сывороточными белками плазмы крови (альфа1-гликопотеином, никелоплазмином и др.) и разносится кровью к органам. Практически весь остаточный никель выводится через кишечник с фекалиями, только 5% остатков никеля удаляются с мочой и с желчью.

Несмотря на малую химическую активность никеля, у него есть довольно активные реакции взаимодействия в организме, которые полезно учитывать для контроля усвоения этого вещества. В присутствии витамина В12 никель стимулирует сократимость и рост мышечных волокон (а если этого витамина в организме мало, никель, наоборот, снижает мышечный тонус. Наличие витамина С ухудшает усвоение никеля. За счет влияния на выведение избыточных стероидных гормонов никель предположительно предупреждает задержку натрия и воды, избавляя от отеков, а также сохраняет кальций в костной ткани, не позволяя развиться остеопорозу. Если организм испытывает дефицит железа, место этого элемента замещают молекулы никеля. Всасывание никеля усиливается во время беременности и грудного вскармливания, что объясняется необходимостью этого химического элемента для синтеза гормонов, отвечающих за вынашивание и лактацию.

Ухудшают усвоение никеля цинк , селен , сера в продуктах и биоактивных добавках. Вместе с медью и кобальтом никель принимает участие в синтезе эритроцитов и других элементов крови.

Основные функции в организме


В человеческом организме никель концентрируется в основном в гипофизе, поджелудочной железе и надпочечниках – важнейших железах эндокринной системы, которые вырабатывают эндорфин, гормон роста, а также другие гормоны, выполняющие следующие функции:

  • отвечают за вынашивание и вскармливание ребенка;
  • стимулируют выработку меланина – пигмента кожи, защищающего ее от УФ-облучения;
  • активизируют работу щитовидной железы;
  • улучшают сократительные способности мышц;
  • помогают в выработке инсулина.

Роль никеля в гормонообразующей деятельности эндокринной системы пока изучается, однако есть данные о том, что никель успокаивает нервную систему, снижая активность адреналина. Благодаря никелю усиливается выработка почками гормона эритропоэтина, отвечающего за выработку красных кровяных телец эритроцитов, за снабжение кислородом всех тканей. Подтверждена роль никеля в регулировании накопления и выведения мочи, выработанных надпочечниками избыточных стероидных гормонов. Благодаря этому снижается артериальное давление, регулируется уровень глюкозы в крови, ускоряется регенерация тканей в организме.

Еще один орган депонирования никеля – печень, и здесь элемент принимает участие в синтезе важнейших для организма аминокислот, которые входят в структуру клеточных ДНК и РНК, укрепляют иммунитет, улучшают работу сердца и сосудов, борются с воспалениями и ускоряют восстановление тканей после них, контролируют массу тела, предотвращают неконтролируемое деление клеток.

Никель участвует в реакциях окисления и восстановления разных органических соединений, важных для работы организма, необходим для выработки некоторых ферментов, без которых не усваиваются витамины, жиры и углеводы.

Польза никеля для организма

Польза никеля для организма плохо изучена, но поскольку он активно влияет на ряд важнейших процессов в органах и системах, можно указать на следующие его полезные свойства:

  • уменьшает проявление артериальной гипертензии;
  • регулирует обмен жиров и углеводов, влияет на уменьшение массы тела;
  • снимает нервное возбуждение;
  • повышает гемоглобин крови;
  • улучшает усвоение инсулина;
  • повышает иммунитет;
  • укрепляет сердечно-сосудистую систему.

Препараты с содержанием никеля активно применяются в трихологии – этот элемент усиливает кровоток в области волосяных фолликулов и улучшает снабжение их кислородом, что помогает уменьшить выпадение волос.

Роль в возникновении и течении различных заболеваний

Доказано влияние никеля на активацию инсулина. Если при сахарном диабете вводить это вещество сразу после инсулина, то значительно усиливается гипогликемическая активность препарата, и его можно принимать реже. У пожилых людей никель начинает накапливаться в легких, и, учитывая вероятную связь этого вещества с гормональной активностью организма, ученые предполагают влияние никеля на возрастную активность легочных гормонов, способных усилить проявления бронхиальной астмы.

Избыточное накопление никеля в организме провоцирует депигментацию кожи – витилиго. Влияние никеля на выработку гистамина в организме сделало этот металл одним из наиболее известных аллергенов: около 15% людей в мире страдают аллергией на никелевые соединения, из которых делают украшения, часы, застежки и заклепки для одежды – это проявляется раздражением и зудящей сыпью на коже.

В каких продуктах содержится никель


Четвертая часть никеля, попадающего в наш организм ежедневно, приходится на водопроводную воду. Особенно много этого химического элемента содержит вода по утрам, когда она долго простояла в трубопроводе. Чемпионами по содержанию никеля считается порошок какао (980 мкг/100 г веса продукта), горький шоколад (260 мкг) и молочный шоколад (120 мкг). Причинами такого высокого содержания никеля в этих продуктах считают использование аппаратуры и емкостей с никелевым покрытием для хранения и переработки шоколадного сырья.

Никель в некоторых продуктах (мкг на 100 г)

Крупы Бобовые, орехи Мясо, рыба Овощи, фрукты
Кукурузная крупа 80 Кешью 510 Говяжья печень 63 Шпинат 390
Овсяные хлопья 50 Соя 304 Ставрида копченая 28 Абрикосы 32
Рис 50 Зеленый горошек 250 Шпроты в масле 14 Груша 18
Пшеница 40 Фасоль 170 Свинина 12 Виноград 16
Рожь 30 Чечевица 160 Треска 9 Капуста белокочанная 15
Перловка 20 Фисташки 40 Говядина 8 Помидоры 13

Совет врача. Тем, кто придерживается диеты на растительных белках, нужно рационально распределять в своем меню богатые белком бобовые и крупяные продукты, чтобы не получить передозировку никеля

Страдающим аллергией на никель нужно постараться иметь в рационе как можно меньше продуктов с высоким содержанием никеля.

Как сохранить никель в пище

Продукты с высоким содержанием никеля (крупы, бобовые) не следует хранить в открытом виде под прямыми солнечными лучами, потому что металл может сформировать различные оксиды, способные накапливаться в организме. С другой стороны, нельзя хранить продукты в посуде с никелированным покрытием больше двух дней – возрастает риск перехода никеля в еду и избыточного накопления минерала в органах и тканях.

Усвояемость минерала

Аллергикам надо помнить и о том, что в напитках с кофеином и в пиве содержится никель, который плохо усваивается и может спровоцировать обострение кожных раздражений.

Всасывание никеля значительно ухудшается, если вместе с содержащими его продуктами пить чай, кофе, молоко, апельсиновый сок, дополнять еду фруктово-ягодными десертами из цитрусовых, киви, черной смородины и других продуктов, в которых много аскорбиновой кислоты.

Сочетание с другими питательными веществами

Никель легко вступает в связь с белками и органическими кислотами (лимонной, яблочной, уксусной и др.), помогая их усвоению. Важно сочетание никеля с продуктами, которые богаты жирами и углеводами. Без никеля не происходит расщепление поступивших с питательными веществами жиров на удобные для всасывания жирные кислоты и глицерин, не высвобождается нужная организму энергия из углеводов.

Суточные нормы никеля


Биологическая роль никеля в организме человека пока не определена точно, поэтому нет научно обоснованных норм потребления этого металла, а потребности в нем обосновываются большей частью на основании наблюдений. Суточная норма никеля для человека определена в диапазоне от 100 до 300 мкг. С продуктами и водой мы получаем каждый день около 600 мкг никеля, но усваиваем не более четверти из поступившего количества, поэтому при сбалансированном рационе недостаток или избыток этого вещества – редкое явление.

Причины и последствия дефицита никеля

Если организм получает в день менее 50 мкг никеля, может развиться дефицитное состояние. Причиной недостатка никеля, помимо неполноценного питания (например, диеты на основе только фруктов или соков, гречки или кофе) могут стать некоторые заболевания желудка и кишечника, нарушающие всасывание никеля, сильная анемия, сердечные болезни.

Совет врача. При синдроме хронической усталости, при физических и умственных перенапряжениях, после перенесенных инфекционных болезней организм нуждается в повышенном поступлении никеля с продуктами питания

Дополнить рацион никелем нужно, посоветовавшись с врачом, при артериальной гипертензии, сахарном диабете, некоторых дерматологических заболеваниях. Особенно осмотрительно следует относиться к никелю беременным и кормящим женщинам. С одной стороны – никель способствует вынашиванию малыша и влияет на лактацию, с другой – это токсичный элемент, поэтому любые биодобавки, витаминные комплексы и даже изменения меню в пользу продуктов, богатых никелем, должны обязательно обсуждаться с врачом.

Признаками недостатка никеля становится мышечная слабость и общая вялость, отсутствие желания двигаться. Снижается сопротивляемость организма вирусам и бактериям, инфекционные заболевания развиваются часто, протекают долго и тяжело. Если долго не принимать меры, сильно снизится уровень гемоглобина, повысится сахар в крови, нарушится сердечная деятельность, разовьются патологии печени, проявятся дерматозы.

Избыток никеля в организме

Избыточное накопление никеля в организме случается гораздо чаще дефицитных состояний, причем происходит из-за воздействия совокупности причин:

  • постоянного пользования никелированной посудой и хранения в ней еды;
  • употребления большого количества продуктов, богатых никелем;
  • повышенное содержание никеля в овощах и фруктах из-за их выращивания на загрязненных этим элементом почвах и водах;
  • высокое содержание никеля в водопроводной воде;
  • злоупотребление консервами (в них много никеля от баночного металла);
  • ношение украшений, часов из никелевых сплавов;
  • некачественные зубные протезы или брекет-системы с выделяющимся из них никелем;
  • вдыхание табачного дыма, выхлопных газов;
  • злоупотребление электронными сигаретами.

Передозировку никеля можно получить, вдыхая пары или пыль с соединениями этого элемента в условиях промышленного производства, при работе с медицинскими препаратами, поскольку никель способен накапливаться в организме. Наиболее опасны сульфат и хлорид никеля – эти соединения растворяются в воде и быстро всасываются.

Оксалаты, силикаты и фосфаты никеля в воде не растворимы и потому менее токсичны.

Острое отравление из-за избытка никеля можно получить при попадании в организм разовой дозы вещества более 50 мг. В этом случае появляются боли в правом подреберье, одышка, тошнота и головные боли.

Важно! Высокий уровень никеля в крови при лабораторном анализе может быть первым признаком развивающегося инфаркта миокарда

Хроническая интоксикация никелем проявляется:

  • кожными воспалениями – кератитом, контактным дерматитом;
  • язвочками на роговице глаз;
  • часто возникающими носовыми кровотечениями;
  • ринитами, болезнями дыхательных путей;
  • нервными расстройствами, раздражительностью и возбудимостью;
  • сбоями сердечного ритма;
  • проблемами с пищеварением.

В запущенных формах избыток никеля грозит отеками мозга и легких, жировой дистрофией печени, почечной недостаточностью, развитием рака легких, желудка.

Первой помощью при остром отравлении никелем может стать введение унитиола (дитиолпропансульфоната натрия), который прочно связывает и выводит никель. По показаниям применяют симптоматическую терапию и исключают из рациона продукты с никелем.

Препараты, содержащие минерал

При невозможности восполнить недостаток никеля из рациона врач может порекомендовать биодобавки или витаминные комплексы с содержанием никеля (например, Витальгин, Витрум). Обычно таблетки или капсулы препарата принимают раз в день во время еды, но продолжительность приема и дозировка обязательно выбираются врачом, поскольку никель – токсичный металл с неприятными побочными эффектами.

Применение никеля в сплавах

Никель является основой большинства жаропрочных материалов, применяемых в аэрокосмической промышленности для деталей силовых установок.

  • монель-металл (65 - 67 % Ni + 30 - 32 % Cu + 1 % Mn), жаростойкий до 500 °C, очень коррозионно-устойчив;
  • нихром, сплав сопротивления (60 % Ni + 40 % Cr);
  • пермаллой (76 % Ni + 17 %Fe + 5 % Cu + 2 % Cr), обладает высокой магнитной восприимчивостью при очень малых потерях на гистерезис;
  • инвар (65 % Fe + 35 % Ni), почти не удлиняется при нагревании.
  • Кроме того, к сплавам никеля относятся никелевые и хромоникелевые стали, нейзильбер и различные сплавы сопротивления типа константана, никелина и манганина.

се нержавеющие стали обязательно содержат никель, т.к. никель повышает химическую стойкость сплава. Также сплавы никеля характеризуются высокой вязкостью и и используются при изготовлении прочной брони. При изготовлении важнейших деталей различных приборов использется сплав никеля с железом (36-38% никеля), обладающий низким коэффициентом термического расширения.

При изготовлении сердечникиов электромагнитов широкое применение находят сплавы под общим названием пермаллои. Эти сплавы, кроме железа, содержат от 40 до 80% никеля. Из никелевых сплавов чеканяться монеты. Общее число различных сплавов никеля, находящих практическое применение, достигает нескольких тысяч.

Никелирование металлов

Никель в чистом виде находит основное применение в качестве защитных покрытий от коррозии в различных химических средах. Защитные покрытия на железе и других металлах получаются двумя известными способами: плакировкой и гальванопластикой. Первым методом плакированный слой создается путем совместной прокатки в горячем состоянии тонкой никелевой пластинки с толстым железным листом. Соотношение толщин никеля и покрываемого металла при этом равно примерно 1:10. В процессе совместной прокатки, за счет взаимной диффузии, эти листы свариваются, и получается монолитный двухслойный или даже трехслойный металл, никелевая поверхность которого предохраняет этот материал от коррозии.

Такого рода горячий метод создания защитных никелевых покрытий широко применяется для предохранения железа и нелегированных сталей от коррозии. Это значительно удешевляет стоимость многих изделий и аппаратов, изготовленных не из чистого никеля, а из сравнительно дешевого железа или стали, но покрытых тонким защитным слоем из никеля. Из никелированных листов железа изготовляются большие резервуары для транспортировки и хранения, например, едких щелочей, применяемые также в различных производствах химической промышленности.

Гальванический способ создания защитных покрытий никелем является одним из самых старых методов электрохимических процессов. Эта операция, широко известная в технике под названием никелирование, в принципе представляет сравнительно простой технологический процесс. Он включает в себя некоторую подготовительную работу по весьма тщательной очистке поверхности покрываемого металла и подготовке электролитической ванны, состоящей из подкисленного раствора никелевой соли, обычно сульфата никеля. При электролитическом покрытии катодом служит покрываемый материал, а анодом - никелевая пластинка. В гальванической цепи никель осаждается на катоде с эквивалентным переходом его из анода в раствор. Метод никелирования имеет широкое применение в технике, и для этой цели потребляется большое количество никеля.

За последнее время метод электролитического покрытия никелем применяется для создания защитных покрытий на алюминии, магнии, цинке и чугунах. В работе описывается применение метода никелирования алюминиевых и магниевых сплавов, в частности для защиты дюралюминиевых лопастей винтовых самолетов. В другой работе описано применение никелированных чугунных барабанов для сушки в бумажном производстве; установлено значительное повышение коррозионной стойкости барабанов и повышение качества бумаги на никелированных барабанах по сравнению с обычными чугунными без никелировки.

Никелирование проводится гальваническим способом с использованием электролитов, содержащих сульфат никеля(II), хлорид натрия, гидроксид бора, поверхностно-активные и глянцующие вещества, и растворимых никелевых анодов. Толщина получаемого никелевого слоя составляет 12 - 36 мкм. Устойчивость блеска поверхности может быть обеспечена последующим хромированием (толщина слоя хрома 0,3 мкм).

Бестоковое никелирование проводится в растворе смеси хлорида никеля(II) и гипофосфита натрия в присутствии цитрата натрия:

NiCl 2 + NaH 2 PO 2 + H 2 O = Ni + NaH 2 PO 3 + 2HCl

Процесс проводят при рН 4 - 6 и 95 °C.

Применение никеля в производстве аккумуляторов

Производство железо-никелевых, никель-кадмиевых, никель-цинковых, никель-водородных аккумуляторов.

Самые распространенные «минусы» в химических источниках тока – это цинк, кадмий, железо, а самые распространенные «плюсы» – окислы серебра, свинца, марганца, никеля. Соединения никеля используются в производстве щелочных аккумуляторов. Кстати, железоникелевый аккумулятор изобретен в 1900 г. Томасом Алвой Эдисоном.

Положительные электроды на основе окислов никеля имеют достаточно большой положительный заряд, они стойки в электролите, хорошо обрабатываются, сравнительно недороги, служат долго и не требуют особого ухода. Этот комплекс свойств и сделал никелевые электроды самыми распространенными. У некоторых батарей, в частности цинково-серебряных, удельные характеристики лучше, чем у железоникелевых или кадмийникелевых. Но никель намного дешевле серебра, к тому же дорогие батареи служат намного меньше.

Окисноникелевые электроды для щелочных аккумуляторов делают из пасты, в состав которой входят гидрат окиси никеля и графитовый порошок. Иногда функции токопроводящей добавки вместо графита выполняют тонкие никелевые лепестки, равномерно распределенные в гидроокиси никеля. Эту активную массу набивают в различные по конструкции токопроводящие пластины.

В последние годы получил распространение другой способ производства никелевых электродов. Пластины прессуют из очень тонкого порошка окислов никеля с необходимыми добавками. Вторая стадия производства – спекание массы в атмосфере водорода. Этим способом получают пористые электроды с очень развитой поверхностью, а чем больше поверхность, тем больше ток. Аккумуляторы с электродами, изготовленными этим методом, мощнее, надежнее, легче, но и дороже. Поэтому их применяют в наиболее ответственных объектах – радиоэлектронных схемах, источниках тока в космических аппаратах и т.д.

Никелевые электроды, изготовленные из тончайших порошков, используются и в топливных элементах. Здесь особое значение приобретают каталитические свойства никеля и его соединений. Никель – прекрасный катализатор сложных процессов, протекающих в этих источниках тока. Кстати, в топливных элементах никель и его соединения могут пойти на изготовление и «плюс» и «минуса». Разница лишь в добавках.

Никель в радиационных технологиях

Нуклид 63 Ni, излучающий β + -частицы, имеет период полураспада 100,1 года и применяется в крайтронах. Никелевые пластинки в последнее время применяют взамен кадмиевых в механических прерывателях нейтронного пучка с целью получения нейтронных импульсов с большим значением энергии.

Применение никеля в медицине
  • Применяется при изготовлении брекет-систем.
  • Протезирование

Образование алого осадка при добавлении диметилглиоксима к аммиачному раствору анализируемой смеси – лучшая реакция для качественного и количественного определения никеля. Но диметилгли-оксимат никеля нужен не только аналитикам. Красивая глубокая окраска этого комплексного соединения привлекла внимание парфюмеров: диметилглиоксимат никеля вводят в состав губной помады. Некоторые из подобных диметилглиоксимату никеля соединений – основа очень светостойких красок.

Другие сферы применения никеля

Имеются интересные указания о применении никелевых пластинок в ультразвуковых установках, как электрических, так и механических, а также в современных конструкциях телефонных аппаратов.

Есть некоторые области техники, где чистый никель применяется или непосредственно в порошкообразном виде или в виде различных изделий, получаемых из порошков чистого никеля.

Одной из областей применения порошкообразного никеля являются каталитические процессы в реакциях гидрогенизации непредельных углеводородов, циклических альдегидов, спиртов, ароматических углеводородов.

Каталитические свойства никеля аналогичны тем же свойствам платины и палладия. Таким образом, химическая аналогия элементов одной и той же группы периодической системы находит отражение и здесь. Никель, как металл более дешевый, чем палладий и платина, широко применяется в качестве катализатора при гидрогенизационных процессах.

Для этих целей целесообразно применять никель в виде тончайшего порошка. Он получается специальным режимом восстановления водородом закиси никеля в интервале температур 300-350°.

Характеризуется отличной коррозионной стойкостью, высокой прочностью, эстетической привлекательностью и способностью принимать любую заданную ему форму. Благодаря своим свойствам этот . Более 60% никеля идет на производство нержавеющей стали.

С участием никеля строят дома, выполняют интересный архитектурный дизайн, делают отделку стен и изготавливают водосточные трубы. Никель присутствует в нашей жизни повсеместно. Поэтому сегодня мы рассмотрим его состав, структуру и свойства никеля.

Никель имеет белый цвет с серебристым оттенком. Этот металл часто сочетается с другими материалами. В результате образуются сплавы.

  • Никель содержится в пище, земной коре, воде и даже в воздухе.
  • Никель имеет гранецентрированную кубическую решетку (а = 3,5236А). В обычном состоянии он представлен в форме β-модификации. При катодном распылении переходит в α-модификацию с гексагональной решеткой. Если далее нагреть никель до 200°C, то его решетка станет кубической.
  • У никеля недостроенная 3d-электронной оболочка, поэтому его относят к переходным металлам.
  • Элемент никель входит в состав самых важных магнитных сплавов и материалов, у которых коэффициент теплового расширения минимален.

Никель, не переработанный и добытый в природе, состоит из 5 стабильных изотопов. В периодической системе Менделеева за никелем числится номер 28. Этот элемент имеет атомную массу равную 58,70.

Свойства никеля

Плотность и масса

Никель относится к ряду тяжелых металлов. Его плотность в два раза больше, чем у металла титан, но равна по числовому значению плотности .

Численное значение удельной плотности никеля составляет 8902 кг/м3. Атомная масса никеля: 58,6934 а. е. м. (г/моль).

Механические характеристики

Никель обладает хорошей ковкостью и тягучестью. Благодаря этим характеристикам он легко подвергается прокату. Из него довольно просто получить тонкие листы и небольшие трубы.

При температуре от 0 до 631 К никель становится ферромагнитным. Происходит этот процесс благодаря особенному строению внешних оболочек атома никеля.

Известны следующие механические характеристики никеля:

  • Повышенная прочность.
  • Предел прочности равный 450 МПа.
  • Высокопластичность материала.
  • Коррозионная стойкость.
  • Высокая температура плавления.
  • Высокая каталитическая способность.

Механические характеристики описываемого металла зависят от наличия примесей. Самыми опасными и вредными считается сера, висмут, и сурьма. Если никель насытить газами, то его механические свойства станут хуже.

Тепло- и электропроводность

  • Металл никель имеет следующую теплопроводность: 90,1 Вт/(м·К) (при температуре 25°C).
  • Электропроводность никеля равна 11 500 000 Сим/м.

Коррозионная стойкость

Под коррозионной стойкостью понимается способность металла при воздействии на него агрессивной среды противостоять разрушению. Никель относиться к материалам с высокой стойкостью к коррозии.

Никель не покрывается ржавчиной в нижеперечисленных средах:

  • Окружающая атмосфера. Никель обладает хорошей устойчивостью к высоким температурам. Если никель находится в условиях промышленной атмосферы, то он всегда покрывается тонкой пленкой, которая приводит к потускнению никеля.
  • Щелочи в горячем и холодном виде, а так же их расплавленные состояния.
  • Органические кислоты.
  • Неорганические кислоты.

Кроме этого, ржавчиной никель не покрывается в горячих спиртах и жирных кислотах. Благодаря этому этот металл широко используют в пищевой промышленности.

Химическая промышленность то же широко использует никель. Это происходит благодаря коррозионной стойкости никеля к воздействию высокой температуры и большой концентрации растворов.

Никель подвержен коррозии при следующих окружающих его условиях:

  • Морская вода.
  • Щелочные растворы гипохлоритов.
  • Сера или любая среда, содержащая серу.
  • Растворы окислительных солей.
  • Гидрат аммиака и аммиачная вода.

Токсичность никеля рассмотрена ниже.

Температуры

Известны следующие термодинамические свойства никеля:

  • Температура плавления никеля: 1726 K или 2647 °F или 1453 °C.
  • Температура кипения никеля: 3005 K или 4949 °F или 2732 °C.
  • Температура литья: 1500-1575 °C.
  • Температура отжига: 750 — 900 °C.

Токсичность и экологичность

В больших количествах никель оказывает токсичное действие на организм. Если речь идет о приеме его с пищей, то повышенное содержание этого элемента обязательно вызовет угрозу для здоровья.

Часто встречающие негативное последствие от переизбытка никеля – это аллергия. Так же при воздействии этого металла (в больших количествах) на организм возникают расстройства желудка и кишечника, обязательно повышается содержание эритроцитов. Никель может вызвать хронический бронхит, почечный стресс и нарушение работы легких. Переизбыток никеля провоцирует рак легкого.

Если вода для питья содержит 250 частиц никеля на миллион частиц воды, то такое содержание может вызвать болезнь крови и проблемы с почками. Однако это довольно редко явление.

Никель содержится в табачном дыме. Вдыхание этого дыма или пыли с содержанием никеля приводит к бронхиту и нарушению функционирования легких. Получить это вещество возможно в условиях или в неблагоприятных экологически районах.

Токсичность никеля представляет собой опасность только в случае попадания в организм человека в больших количествах. Если никель используется в промышленности и в строительных делах, то он не опасен.

Другие характеристики

Еще никель имеет следующие характеристики:

  • Удельное электрическое сопротивление никеля равное 68,8 ном·м.
  • В химическом плане никель схож с железом, кобальтом, купрумом и некоторыми благородными металлами.
  • Никель взаимодействует с кислородом при температуре в 500 С.
  • Если никель переходит в мелкодисперсное состояние, то он может самовоспламениться.
  • Никель не реагирует с азотом даже при условии очень высокой температуры.
  • Никель медленнее чем железо растворяется в кислотах.

Никель – пластичный металл серебристо-белого цвета, обладающий сильным блеском. Легко поддается физическому воздействию и полировке, но проявляет малую химическую активность и лишь при воздействии температуры подвергается окислению.

Вещество можно назвать «космическим», т.к. первые образцы попали человечеству буквально с неба. В старину люди переплавляли этот метеоритный металл на оружие и талисманы.

Происхождение названия носит на себе печать магии, якобы на рудниках Саксонии орудовал зловредный гном «Старый Ник», который превращая медную руду в негодную. Слово «Nickel» выражало презрительное отношение к минералу купферникель или «ложная медь». Впоследствии оказалось, что горняки находили залежи никеля, который еще древние китайцы использовали для изготовления предметов роскоши.

В Старом и Новом Свете его применяли для чеканки денег, украшений и отделочных работ.

В чистом виде элемент был открыт в 1751 году, чему не очень обрадовались, т.к. на то время еще было устойчиво мнение, что число металлов должно соответствовать числу планет солнечной системы.

Металл активно используют в военной промышленности, машиностроении, из него даже делают проволоку для подводных кабелей. Сложно будет даже перечислить все сферы промышленности, науки и техники, где актуально его применение. Его добавляют даже в состав косметики и бытовой химии, а медицина использует его сплавы для производствая имплантов.

Ученые полагают, никеля на нашей планете очень много, и приблизительное его содержание около 3% всей земной коры.

Действие никеля

Действие макроэлемента на организм человека не донца изучено, но те функции, в которых он принимает участие, важны уже сами по себе:

  • участвует в кроветворении в комплексе с медью, железом и кобальтом;
  • увеличивает продуктивность инсулина;
  • участвует в формировании и работе носителей генной информации ДНК и РНК, белков;
  • является поставщиком кислорода в клетки тканей;
  • при его участии происходит активация ряда ферментов;
  • улучшает работу почек и гипофиза;
  • способствует гормональной регуляции;
  • увеличивает рост мышечной ткани, но лишь в присутствии витамина В12, иначе процесс будет обратным;
  • снижает артериальное давление.

Все эти процессы могут происходить благодаря тому, что элемент накапливается в основных органах тела человека: головном мозге, почках, печени, легких, мышцах, коже, в поджелудочной и щитовидной железах. Самое большое его количество находится в гипофизе и железах, тех, что отвечают за обменные процессы в организме. Именно здесь происходит синтез основных витаминов, гормонов и прочих полезных веществ.

Интересно, что с возрастом может происходить увеличение концентрации элемента в легких.

Из организма элемент выводится в основном с калом и значительно меньше при потоотделении и с желчью.

Суточная норма

Суточная норма макроэлемента по разным данным составляет от 60 до 300 мкг. Основную массу наш организм способен усвоить из пищи, поэтому нехватка вещества – достаточно редкое явление. К тому же потребность сильно зависит от количества поступления железа – она возрастает прямо пропорционально, и наоборот. Особенно это актуально для женщин во время беременности.

Недостаток никеля в организме

Недостаток макроэлемента может оказывать негативное воздействие при длительном поступлении в организм менее 50 мкг в день, что может вызвать негативные последствия в виде дерматита. Согласно клиническим экспериментам возможны также такие процессы, как:

  • нарушение уровня глюкозы и гемоглобина;
  • изменения в костных тканях, их росте и регенерации;
  • нарушение обмена кальция, железа и витамина В12;
  • изменение структуры клетки и мембраны.

Усвояемость значительно снижается при употреблении в пищу продуктов с содержанием аскорбиновой кислоты, а также при употреблении кофе, чая и молока. Не стоит самостоятельно применять медикаменты для повышения никеля в организме, т.к. результаты могут быть плачевными. Элемент в пище абсолютно нетоксичен, чего нельзя сказать о нем в препаратах. Не стоит рисковать во избежание возможных мутационных процессов в клетках и во избежание формирования новообразований.

Избыток никеля и последствия отравления ним

Переизбыток макроэлемента гораздо чаще встречается, чем нехватка. Причинами служат бытовые и производственные факторы, где используются водорастворимые хлорид и сульфат никеля.

Также возможно накопление в организме никелевой пыли, что характерно для промышленной переработки металлов. В быту же избыток элемента можно получить при использовании некачественных украшений, зубных протезов и посуды. Правда, в этом случае избыток все-таки незначительный.

Токсической дозой считается употребление в день более 40 мг. Продукты питания не способны вызывать такого накопления, к тому же кишечник не способен усваивать весь потребленный элемент. А вот люди могут сами усугублять ситуацию интенсивным курением, ношением некачественных изделий и протезов.

Интересно, что качественная никелированная посуда абсолютно безопасна и является довольно распространенной, а еще 100 лет назад только очень богатые люди могли нею воспользоваться, потому что даже особы королевского рода считали ее роскошной и экзотичной.

Отравления никелем вызывают негативные последствия:

Отравления могут быть довольно серьезными и даже вызывать летальные исходы всего лишь за полтора часа. Например, карбонильные соединения никеля относят к первому классу опасности, что говорит об их чрезвычайном вреде для человеческого организма.

Однако существуют и другие, довольно опасные заболевания, которые могут возникать в результате токсического воздействия соединений никеля – анемия, отек легких и мозга, тахикардия, аллергия. Возможно даже развитие новообразований кожи, почек и легких. На этом фоне общее перевозбуждение нервной системы выглядит маленькой неприятностью. Но ничего хорошего не добавит. Женщинам во время беременности просто опасно работать на профильных производствах, т.к. плод получает запас никеля по полной программе из-за полной проницаемости плаценты, а это в свою очередь может привести к самопроизвольным абортам и порокам развития.

Самое распространенное негативное воздействие никеля на организм – это аллергия, особенно ему подвержен прекрасный пол, благодаря ношению аксессуаров и бижутерии, часто сомнительного качества и производства. Она выражается в виде контактного дерматита – сыпи, покраснений, зуда.

В чем содержится этот элемент?

Продукты питания, содержащие никель очень разнообразны и полностью доступны. Наконец, хоть один элемент сжалился и соизволил в большом количестве накопиться в шоколаде! Также богаты ним какао-зерна, орехи, чай, бобовые, зерновые, злаки, гречка, лук, петрушка, морковь, грибы, абрикосы, черная смородина. Обращайте внимание на происхождение этих продуктов, потому что растения, выращенные на землях «загрязненных» никелем, могут быть перенасыщены элементом.

Элемент также может поступать с питьевой водой, особенно много его в утреннее время, из-за того, что за ночь вода застаивается в водопроводе и концентрация может нарастать.

Продукты животного происхождения хоть и не могут посоперничать за лидерство в богатстве никелем – морская рыба и прочие морепродукты, мясо, печень, яйца, молочные продукты все-таки тоже могут обогатить наш рацион.

Учитывайте при составлении меню тот факт, что витамин С, чай, молоко и кофе уменьшают способность организма усваивать элемент. А вот отсутствие кальция и магния оказывают обратное действие.

Показания к назначению

Показания к назначению макроэлемента находятся в основном в сфере лечения кожных заболеваний еще с 19 века. Сегодня никельсодержащие препараты успешно борются с псориазом. Также никель используется в качестве вспомогательного компонента при больших кровопотерях для стимуляции синтеза эритроцитов в виде подкожных инъекций.

Никель относится к переходным металлам первого длинного периода и в периодической системе Д.И. Менделеева располагается в VIIIA подгруппе вместе с железом и кобальтом.

Никель кристаллизуется в кубической гранецентрированной решетке с периодом при комнатной температуре, равным 0,352387 нм. Атомный диаметр никеля – 0,248 нм. Плотность никеля (8,897 г/см 3) почти такая же, как у меди, и в два раза превышает плотность титана, так что никель относят к числу тяжелых цветных металлов.

Физические свойства никеля приведены в табл. 7. Скрытая теплота плавления никеля примерно такая же, как у магния, и несколько больше, чем у алюминия. Его удельная теплоемкость сравнительно невелика и лишь немного превышает теплоемкость меди. Удельная электро- и теплопроводность никеля меньше, чем у меди и алюминия, но значительно превышает электро- и теплопроводность титана и многих других переходных металлов. Модули упругости у никеля примерно такие же, как у железа.

Никель – ферромагнитный металл, но его ферромагнетизм выражен значительно меньше, чем у железа и кобальта. Точка Кюри для никеля составляет 358 ˚С, выше этой температуры никель переходит в парамагнитное состояние.

Чистый никель – металл серебристого цвета. При высокотемпературном окислении никеля образуются два оксидных слоя: внутренний – светло-зеленый и внешний – темно-зеленый. Два этих слоя состоят из оксида, но отличаются количеством кислорода.

Никель характеризуется более высокой коррозионной стойкостью в атмосферных условиях по сравнению с другими техническими металлами, что обусловлено образованием на его поверхности тонкой и прочной защитной пленки. Никель обладает достаточной устойчивостью не только в пресной, но и в морской воде. Минеральные кислоты, особенно азотная, сильно действуют на никель. Щелочные и нейтральные растворы солей на никель влияют незначительно даже при нагревании, в кислых растворах солей он корродирует довольно сильно. В концентрированных растворах щелочей никель устойчив даже при высоких температурах.

Никель при комнатной температуре не взаимодействует с сухими газами, но присутствие влаги заметно повышает скорость его коррозии в этих средах. Никель, загрязненный кислородом, склонен к водородной болезни.

Сырье для получения никеля

В настоящее время никелевые заводы перерабатывают в основном два типа руд, резко различающихся по химическому составу и свойствам: окисленные никелевые и сульфидные медно-никелевые. Значение этих руд для отечественной никелевой промышленности и за рубежом различно. В России из года в год возрастает доля никеля, получаемого из сульфидных руд, а в зарубежных странах, наоборот, все большее значение приобретают окисленные руды.

Окисленные никелевые руды представляют собой горные породы вторичного происхождения, состоящие в основном из гидратированных магнезиальных силикатов, алюмосиликатов и оксида железа. Никелевые минералы в них составляют незначительную часть рудной массы. Наиболее часто никель находится в виде бунзеита (NiO), гарниерита [(Ni, Mg)O · SiO 3 · nH 2 O] или ревденскита . Кроме никеля полезным компонентом этих руд является кобальт, содержание которого обычно в 15…25 раз меньше содержания никеля. Иногда в окисленных рудах присутствует в небольших количествах медь (0,01…0,02 %).

Пустая порода, составляющая основную массу руды, представлена глиной Al 2 O 3 · 2SiO 2 · 2H 2 O, тальком 3MgO · 4SiO 2 · 2H 2 O, другими силикатами, бурым железняком Fe 2 O 3 · nH 2 O, кварцем и известняком.

Окисленные никелевые руды отличаются исключительным непостоянством состава по содержанию как ценных компонентов, так и пустой породы. Эти колебания состава наблюдаются даже в массиве одного месторождения. Возможные пределы концентраций компонентов руды характеризуются следующими цифрами, %: Ni – 0,7…4; Co – 0,04…0,16; SiO 2 – 15…75; Fe 2 O 3 – 5…65; Al 2 O 3 – 2…25; Cr 2 O 3 – 1…4; MgO – 2…25; CaO – 0,5…2; конституционная влага – до 10…15.

По внешнему виду окисленные никелевые руды похожи на глину. Для них характерны пористое, рыхлое строение, малая прочность кусков, высокая гигроскопичность. Рациональных методов обогащения таких руд до сих пор не найдено, и они после соответствующей подготовки непосредственно поступают в металлургическую переработку.

В сульфидных рудах никель присутствует главным образом в виде пентландида, представляющего изоморфную смесь сульфидов никеля и железа переменного соотношения, и частично в форме твердого раствора в пирротине.

Основным спутником никеля в сульфидных рудах является медь, содержащаяся главным образом в халькопирите. Из-за высокого содержания меди эти руды называют медно-никелевыми. Кроме никеля и меди в них обязательно присутствуют кобальт, металлы платиновой группы, золото, серебро, селен и теллур, а также сера и железо. Таким образом, сульфидные медно-никелевые руды являются полиметаллическим сырьем очень сложного химического состава. При их металлургической переработке в настоящее время извлекают 14 ценных компонентов.

Химический состав сульфидных медно-никелевых руд следующий, %: Ni – 0,3…5,5; Cu – 0,2…1,9; Co – 0,02…0,2; Fe – 30…40; S – 17…28; SiO 2 – 10…30; MgO – 1…10; Al 2 O 3 – 5…8. По структуре медно-никелевые руды могут быть сплошными, жильными и вкрапленными. Чаще встречаются два последних типа руд. В зависимости от глубины залегания руду добывают как открытым, так и подземным способом.

В отличие от окисленных никелевых руд медно-никелевые руды характеризуются высокой механической прочностью, негигроскопичны и могут подвергаться обогащению.

Основным способом обогащения сульфидных медно-никелевых руд является флотация. Иногда флотационному обогащению предшествует магнитная сепарация, направленная на выделение пирротина в самостоятельный концентрат. Возможность проведения магнитной сепарации обусловлена относительно высокой магнитной восприимчивостью пирротина.

Выделение пирротинового концентрата при обогащении руды улучшает качество первичного никелевого концентрата вследствие вывода из него значительной части железа и серы и упрощает его последующую металлургическую переработку. Однако при получении пирротинового концентрата возникает необходимость в обязательной его переработке с целью извлечения никеля, серы и платиноидов.

Флотационное обогащение медно-никелевых руд может быть коллективным или селективным. При коллективной флотации за счет отделения пустой породы получают медно-никелевый концентрат. Однако и селективная флотация не обеспечивает полного разделения меди и никеля. Продуктами селекции в этом случае будут медный концентрат с относительно небольшим содержанием никеля и никелево-медный концентрат, отличающийся от руды более высоким отношением Ni: Cu.

Таким образом, в зависимости от принятой схемы обогащения сульфидных медно-никелевых руд можно получать коллективные медно-никелевые, медные, никелевые и пирротиновые концентраты, состав которых приведен в табл. 8.

Способы получения никеля

Сульфидные руды и окисленные руды перерабатывают различными способами – пиро- и гидрометаллургическими.

Плавка на штейн сульфидных руд и концентратов

Руды с суммарным содержанием больше 2–5 % меди и никеля считают богатыми, их плавят без предварительного обогащения.

Руды и концентраты содержат одни и те же минералы, поэтому к ним могут быть применены после необходимой подготовки одни и те же способы переработки.

При нагревании руды до 400–600 ˚С еще до начала плавления халькопирит и никельсодержащие сульфиды разлагаются:

6(NiS, FeS) → 2Ni 3 S 2 + 6FeS + S 2 ,
4CuFeS 2 → 2Cu 2 S + 4FeS + S 2 ,
2Fe 7 S 8 → 14FeS + S 2 .

В результате этих реакций сложная совокупность минералов превращается в смесь простых сульфидов: Ni 3 S 2 , FeS и Cu 2 S.

При температурах, необходимых для плавления шлака, состоящего из окислов пустой породы и флюсов, сульфиды меди, никеля и железа неограниченно растворимы друг в друге; они образуют медно-никелевый штейн, отделяемый от шлака в виде более тяжелого жидкого слоя.

Если часть серы при плавке окислена или удалена предварительным обжигом, распределение меди, никеля и железа между штейном и шлаком будет зависеть от сродства этих металлов к кислороду и сере. В условиях плавки сродство к сере, определяющее возможность перехода металла в штейн, у меди больше, чем у никеля, а у никеля больше, чем у железа. Сродство тех же металлов к кислороду убывает в обратной последовательности. При недостатке серы для сульфидирования всех металлов сначала будет переходить в штейн медь, затем никель и, наконец, часть железа. Чем больше железа перейдет в штейн, тем больше полнота сульфидирования меди и никеля, но штейн, разбавленный сернистым железом, будет бедным. Для полного перевода никеля в штейн при плавке руды или концентрата не стремятся к полному шлакованию железа, оставляя часть его в штейне.

Кобальт по сродству к сере и кислороду занимает промежуточное положение между железом и никелем.

Расплавленный штейн продувают в конвертере, добавляя кварц; железо, окисляясь, шлакуется кремнеземом.

Основной продукт конвертерного передела – медно-никелевый файнштейн – представляет собой сплав сульфидов меди и никеля, содержащий 1–3 % железа.

Кобальт при продувке частично шлакуется вместе с железом.

Конвертерный шлак иногда направляют в отдельный передел для извлечения кобальта. Благородные металлы концентрируются почти полностью в файнштейне.

Охлажденный файнштейн дробят, измельчают и подвергают флотации. При этом получают два концентрата: никелевый, состоящий почти из чистого Ni 3 S 2 , и медный, содержащий Cu 2 S; последний перерабатывают на медь обычным медным концентратом плавкой на штейн и продувкой в конвертере.

Никелевый концентрат обжигают, окисляя его по реакции

Полученный таким образом серый порошок закиси никеля, содержащий окислы кобальта и платиновые металлы, восстанавливают углем в электропечах до металла, который разливают в аноды.

Никелевые аноды подвергают электролитическому рафинированию, попутно извлекая из электролита кобальт и остаток меди, а из шлама – платиноиды.

Богатые крупнокусковые медно-никелевые руды плавят на штейн в шахтных печах, если пустая порода этих руд не слишком тугоплавка. В ряде случаев для руд, содержащих много окиси магния или другие тугоплавкие составляющие, приходится прибегать к электроплавке.

Флотационные концентраты и мелкие фракции богатых руд плавят в отражательных или электрических печах; при высоком содержании серы в этих материалах применяют предварительный обжиг.

Выбор способа плавки во многом зависит от состава сырья и местных экономических условий, в частности от наличия того или иного топлива и цены на электроэнергию.

Гидрометаллургический способ переработки сульфидных руд

По этому способу измельченную руду или концентрат обрабатывают раствором аммиака и (NH 4) 2 SO 4 в автоклавах под избыточным давлением воздуха около 506,7 кн/м 2 (7ат). Медь, никель и кобальт переходят в раствор в виде комплексных аммиачных солей, например по реакции

NiS + 2O 2 + 6NH 3 = Ni(NH 3) 6 SO 4 .

Энергичное окисление сульфидов сопровождается выделением тепла, избыток которого отводят холодильниками, поддерживая в автоклаве температуру 70–80 ºС, сера, входящая в состав концентрата, при этом окисляется до S 2 O3 2− , S 3 O 6 2− и SO 4 2− , а железо выпадает в осадок в виде гидроокиси и основных сульфатов.

Отфильтрованный раствор кипятят для осаждения меди по реакции

Cu 2+ + 2S 2 O 3 2− = CuS + SO 4 2− + S + SO 2 .

После этого частично оставшуюся в растворе медь осаждают сероводородом, а очищенный от нее раствор, содержащий никель и кобальт, обрабатывают в автоклаве водородом при давлении около 2,5 Мн/м 2 (25 ат) и температуре около 200 ºС.

Сначала осаждается основная масса никеля

Ni(NH3) 6 2+ + H 2 = Ni + 2NH 4 + + 4NH 3

в виде частиц крупностью от 2 до 80 мкм. Отфильтровав осадок, остаток никеля и кобальт выделяют из раствора сероводородом.

При дальнейшей обработке осадка сульфидов кислородом и аммиаком в автоклаве растворяется кобальт. Нерастворимый осадок, содержащий преимущественно сульфид никеля, возвращают на основное выщелачивание, а из раствора действием водорода под давлением выделяют кобальт.

Схема сложна и требует дорогой аппаратуры; однако она позволяет извлекать из комплексных концентратов до 95 % Ni, около 90 % Сu и 50–75 % Со.

Плавка окисленных руд на штейн

Наиболее распространенный в настоящее время способ переработки окисленных никелевых руд плавкой на штейн основан на различии сродства железа и никеля к кислороду и сере.

Никель путем сульфидирования переводится в штейн – сплав Ni 3 S 2 и FeS; основная масса железа удаляется со шлаком:

6FeS + 6NiO = 6FeO + 2Ni 3 S 2 + S 2 ,
2FeO + SiO 2 = FeSiO 4 .

Окисленные руды не содержат серы, поэтому ее приходится вводить, добавляя при плавке пирит или гипс. Гипс, восстанавливаясь до сернистого кальция, сульфидирует железо и никель. Действие гипса при плавке более сложно, чем действие пирита, однако во многих случаях все же пользуются гипсом, а не пиритом, так как гипс дешевле пирита и не дает
железистых шлаков.

Наиболее выгодно при переработке окисленных никелевых руд применять местный кобальтсодержащий пирит, в котором очень мало меди и нет благородных металлов.

Никелевый штейн, полученный в результате плавки руды с пиритом или гипсом, содержит до 60 % Fe, которое далее отделяют от никеля продувкой жидкого штейна в конвертере. При конвертировании происходит избирательное окисление железа и шлакование его добавляемым в конвертер кварцем – получается практически чистый от железа никелевый файнштейн. Конвертерный шлак богат никелем, поэтому он является оборотным продуктом – его возвращают в рудную плавку либо направляют на отдельную переработку для извлечения кобальта.

Файнштейн разливают в изложницы, затем измельчают и обжигают намертво:

2Ni 3 S 2 + 7O 2 = 6NiO + 4SO 2 .

Закись никеля смешивают с малосернистым восстановителем, например с нефтяным коксом, и плавят в электрической печи при 1500 ºС, получая жидкий никель.

Никель отливают в аноды для электролитического рафинирования либо гранулируют, сливая его тонкой струей в воду.

Плавка окисленных руд на никелистый чугун (ферроникель)

Богатые окисленные руды иногда плавят в электрических печах с углем, восстанавливая из них все железо, никель и кобальт в природнолегированный чугун.

Подобную плавку сравнительно бедных руд проводят и в доменных печах, однако она имеет ограниченное применение.

Несмотря на преимущественное использование никеля в специальных сталях, выплавка его в виде сплава с железом не всегда приемлема: в сплав переходят кобальт, марганец, хром и другие примеси, случайные сочетания которых не всегда позволяют использовать ценные свойства этих металлов.

Кричный способ переработки окисленных руд

По этому способу руду, смешанную с углем, нагревают в трубчатых вращающихся печах при температуре около 1050 ºС, позволяющей восстановить вместе с никелем и кобальтом только часть железа. Восстановленные металлы получаются в виде зерен, смешанных с полурасплавленным шлаком. Охлажденный шлак дробят и извлекают из него кричный сплав электромагнитом. Способ не получил широкого распространения по тем же причинам, что и предыдущий, – из-за невозможности отдельного использования кобальта.

Гидрометаллургия окисленных руд

По одному из этих способов, известному в литературе под названием кубинского, измельченную руду подвергают восстановительному обжигу в механических многоподовых печах в среде генераторного газа. При 600–700 ºС никель и кобальт восстанавливаются до металлов, а железо – только до закиси. Далее руду выщелачивают раствором аммиака в присутствии углекислоты и кислорода воздуха. Никель образует растворимые в воде аммиакаты по реакции

2Ni + 12NH 3 + 2CO 2 + O 2 = 2Ni(NH 3) 6 CO 3 .

После отделения пустой породы сгущением и промывкой раствор обрабатывают острым паром. В результате удаления избытка аммиака протекает гидролиз с выделением в осадок основных карбонатов никеля:

2Ni(NH 3) 6 CO 3 + H 2 O = NiCO 3 Ni(OH) 2 + CO 2 + 12NH 3 .

Аммиак из газов поглощают водой и вновь направляют на выщелачивание. Закись никеля спекают на агломерационных машинах и в виде спека поставляют на сталеплавильные заводы.

Публикации по теме