Цтк биохимия. Цикл трикарбоновых кислот (цикл кребса). Функции цикла трикарбоновых кислот многообразны

Я рассказывал о том, что это вообще такое, для чего цикл Кребса нужен и какое место в метаболизме он занимает. Теперь давайте приступим к самим реакциям этого цикла.

Сразу оговорюсь — лично для меня заучивание реакций было совершенно бессмысленным занятием до того, пока я не разобрал вышеуказанные вопросы. Но если вы уже разобрались с теорией, предлагаю перейти к практике.

Вы можете увидеть множество способов написания цикла Кребса. Чаще всего встречаются варианты вроде этого:

Но мне удобнее всего показался способ написания реакций из старого доброго учебника по биохимии от авторов Берёзова Т.Т. и Коровкина Б.В.

Первая реакция

Уже знакомые нам Ацетил-КоА и Оксалоацетат соединяются и превращаются в цитрат, то есть в лимонную кислоту .

Вторая реакция

Теперь берём лимонную кислоту и превращаем её изолимонную кислоту . Другое название этого вещества — изоцитрат.

На самом деле, эта реакция идёт несколько сложнее, через промежуточную стадию — образование цис-аконитовой кислоты. Но я решил упростить, чтобы вы получше запомнили. При необходимости вы сможете добавить сюда недостающую ступень, если будете помнить всё остальное.

По сути, две функциональные группы просто поменялись местами.

Третья реакция

Итак, у нас получилась изолимонная кислота. Теперь её нужно декарбоксилировать (то есть отщипнуть COOH) и дегидрировать (то есть отщипнуть H) . Получившееся вещество — это a-кетоглутарат .

Эта реакция примечательна тем, что здесь образуется комплекс HAДH 2 . Это значит, что переносчик НАД подхватывает водород, чтобы запустить дыхательную цепь.

Мне нравится вариант реакций Цикла Кребса в учебнике Берёзова и Коровкина именно тем, что сразу отлично видно атомы и функциональные группы, которые участвуют в реакциях.

Четвёртая реакция

Снова как часы работает никотинАмидАденинДинуклеотид, то есть НАД . Это славный переносчик появляется здесь, как и в прошлом шаге, чтобы захватить водород и унести его в дыхательную цепь.

Кстати, получившееся вещество — сукцинил-КоА , не должно вас пугать. Сукцинат — это другое название янтарной кислоты, хорошо знакомой вам со времён биоорганической химии. Сукцинил-Коа — это соединение янтарной кислоты с коэнзимом-А. Можно сказать, что это эфир янтарной кислоты.

Пятая реакция

В прошлом шаге мы говорили, что сукцинил-КоА — это эфир янтарной кислоты. А теперь мы получим саму янтарную кислоту , то есть сукцинат, из сукцинила-КоА. Крайне важный момент: именно в этой реакции происходит субстратное фосфорилирование .

Фосфорилирование вообще (оно бывает окислительное и субстратное) — это добавление фосфорной группы PO 3 к ГДФ или АТФ, чтобы получить полноценный ГТФ , или соответственно, АТФ. Субстратное отличается тем, что эта самая фосфорная группа отрывается от какого-либо вещества, её содержащую. Ну проще говоря, она переносится с СУБСТРАТА на ГДФ или АДФ. Поэтому и называется — «субстратное фосфорилирование».

Ещё раз: на момент начала субстратного фосфорилирования у нас имеется дифосфатная молекула — гуанозинДифосфат или аденозинДифосфат. Фосфорилирование заключается в том, что молекула с двумя остатками фосфорной кислоты — ГДФ или АДФ «достраивается» до молекулы с тремя остатками фосфорной кислоты, чтобы получились гуанозинТРИфосфат или аденозинТРИфосфат. Этот процесс происходит во время превращения сукцинила-КоА в сукцинат (то есть, в янтарную кислоту).

На схеме вы можете увидеть буквы Ф (н). Это значит «неорганический фосфат». Неорганический фосфат переходит от субстрата на ГДФ, чтобы в продуктах реакции был хороший, полноценный ГТФ. Теперь давайте посмотрим на саму реакцию:

Шестая реакция

Следующее превращение. На сей раз янтарная кислота, которую мы получили в прошлом этапе, превратится в фумарат , обратите внимание на новую двойную связь.

На схеме отлично видно, как в реакции участвует ФАД : этот неутомимый переносчик протонов и электронов подхватывает водород и утаскивает его непосредственно в дыхательную цепь.

Седьмая реакция

Мы уже на финишной прямой. Предпоследняя стадия Цикла Кребса — это реакция превращения фумарата в L-малат. L-малат — это другое название L-яблочной кислоты , знакомой ещё с курса биоорганической химии.

Если вы посмотрите на саму реакцию, вы увидите, что, во-первых, она проходит в обе стороны, а во-вторых, её суть — гидратирование. То есть фумарат просто присоединяет к себе молекулу воды, в итоге получается L-яблочная кислота.

Восьмая реакция

Последняя реакция Цикла Кребса — это окисление L-яблочной кислоты до оксалоацетата, то есть до щавелевоуксусной кислоты . Как вы поняли, «оксалоацетат» и «щавелевоуксусная кислота» — это синонимы. Вы, наверное, помните, что щавелевоуксусная кислота является компонентом первой реакции цикла Кребса.

Здесь же отмечаем особенность реакции: образование НАДH 2 , который понесёт электроны в дыхательную цепь. Не забудьте также реакции 3,4 и 6, там также образуются переносчики электронов и протонов для дыхательной цепи.

Как видите, я специально выделил красным цветом реакции, в ходе которых образуются НАДH и ФАДH2. Это очень важные вещества для дыхательной цепи. Зелёным я выделил реакцию, в рамках которой происходит субстратное фосфорилирование, и получается ГТФ.

Как это всё запомнить?

На самом деле, не так уж и сложно. Полностью прочитав две моих статьи, а также ваш учебник и лекции, вам нужно просто потренироваться писать эти реакции. Я рекомендую запомнить цикл Кребса блоками по 4 реакции. Напишите эти 4 реакции несколько раз, для каждой подбирая ассоциацию, подходящую именно вашей памяти.

Например, мне сразу очень легко запомнилась вторая реакция, в которой из лимонной кислоты (она, думаю, всем знакома с детства) образуется изолимонная кислота.

Вы можете так же использовать мнемонические запоминалки, такие как: «Целый Ананас И Кусочек Суфле Сегодня Фактически Мой Обед , что соответствует ряду - цитрат, цис -аконитат, изоцитрат, альфа-кетоглутарат, сукцинил-CoA, сукцинат, фумарат, малат, оксалоацетат». Есть ещё куча подобных.

Но, если честно, мне не нравились такие стихи практически никогда. По-моему, проще запомнить саму последовательность реакций. Мне отлично помогло разделение цикла Кребса на две части, каждую из которых я тренировался писать по несколько раз в час. Как правило, это происходило на парах вроде психологии или биоэтики. Это весьма удобно — не отвлекаясь от лекции, вы можете потратить буквально минутку, написав реакции так, как вы их запомнили, а затем сверить с правильным вариантом.

Кстати, в некоторых вузах на зачётах и экзаменах по биохимии преподаватели не требуют знания самих реакций. Нужно знать только что такое цикл Кребса, где он происходит, в чём его особенности и значение, и, разумеется, саму цепочку превращений. Только цепочку можно называть без формул, используя лишь названия веществ. Такой подход не лишён смысла, на мой взгляд.

Надеюсь, моё руководство по циклу трикарбоновых кислот вам помогло. А я хочу напомнить, что эти две статьи не являются полноценной заменой вашим лекциям и учебникам. Я написал их лишь для того, чтобы вы примерно понимали, что такое цикл Кребса. Если вы вдруг увидели какую-то ошибку в моём руководстве, пожалуйста, отпишитесь о ней в комментариях. Спасибо за внимание!

Метаболизм

Метаболизм – это энергетический обмен, происходящий в нашем организме. Мы вдыхаем кислород и выдыхаем углекислый газ. Только живое существо может что-то брать из окружающей среды и обратно возвращать в другом виде.

Допустим, мы решили позавтракать и съели хлеб с курицей. Хлеб - это углеводы, курица – это белки.
В течении этого времени переваренные углеводы распадутся до моносахаридов, а белки до аминокислот.
Это начальная стадия – катаболизм. На этой ступени по своему строению сложные распадаются на более простые.

Также, в качестве примера можно привести обновление поверхности кожи. Они постоянно меняются. Когда верхний слой кожи отмирает, макрофаги убирают омертвевшие клетки и появляется новая ткань. Она создается путем сбора белка из органических соединений. Это протекает в рибосомах. Совокупность действий возникновения сложного состава (белка) из простого (аминокислот) называется анаболизмом.

Анаболизм:

  • рост,
  • увеличение,
  • расширение.

Катаболизм:

  • расщепления,
  • деление,
  • уменьшения.

Название можно запомнить, просмотрев фильм «Анаболики». Там идет речь о спортсменах, применяющих анаболические препараты для роста и увеличения мышечной массы.

Что такое Цикл Кребса?

В 30 годы 20 века ученый Ганс Кребс занимается изучение мочевины. Затем он переселяется в Англию и приходит к такому выводу, что некоторые ферменты катализируются в нашем теле. За это ему вручили Нобелевскую премию.

Мы получаем энергию благодаря глюкозе, содержащейся в эритроцитах. Действию перехода декстроза в энергию помогают митохондрии. Затем конечный продукт превращается в аденозинтрифосфат или АТФ. Именно АТФ является главной ценностью организма. Получаемое вещество насыщает энергией и органы нашего тела. Сама по себе глюкоза не может видоизмениться в АТФ, для этого нужны сложные механизмы. Этот переход и называется Циклом Кребса.

Цикл Кребса — это постоянные химические превращения, происходящие внутри каждого живого существа. Так оно называется, так как процедура повторяется без остановки. В итоге этого явления мы приобретаем аденозинтрифосфорную кислоту, которая считается жизненно важной для нас.

Важным условием является дыхание клетки. Во время прохождения всех стадий обязательно должен присутствовать кислород. На данном этапе также происходит создание новых аминокислот и углеводов. Эти элементы играют роль строителей организма, можно сказать это явление выполняет еще одну значительную роль — строительную. Для эффективности этих функций нужны и другие микро и макроэлементы и витамины. При недостатке хоть одного элемента, работа органов нарушается.

Этапы цикла Кребса

Здесь происходит деление одной молекулы глюкозы на две части пировиноградной кислоты. Она является важным звеном в процессе обмена веществ и от нее зависит работа печени. Она имеется во многих фруктах и ягодах. Ее часто используют в косметических целях. В результате еще может появиться молочная кислота. Она содержится в клетках крови, мозга, мышц. Затем мы получим кофермент А. Его функция — перенос углерода в разные части тела. При присоединении с оксалатом получаем цитрат. Кофермент А полностью распадается, также получаем молекулу воды.

На втором вода отделяется от цитрата. В итоге появляется акатиновое соединение, она поможет при получении изоцитрата. Так, например, мы можем узнать качество фруктов и соков, нектаров. Образуется NADH — оно необходимо при окислительных процессах и обмене веществ.
Происходит процесс соединения с водой, и высвобождается энергия аденозинтрифосфата. Получение оксалоцетата. Функционирует в митохондриях.

По каким причинам замедляется энергетический обмен?

Наше тело имеет особенность адаптироваться к еде, к жидкости и тому, сколько мы двигаемся. Эти вещи сильно влияют на метаболизм.
Еще в те далекие времена человечество выживало в тяжелых погодных условиях при болезнях, голоде, неурожае. Сейчас медицина двинулась вперед, поэтому в развитых странах люди стали дольше жить и лучше зарабатывать, не прикладывая всех своих сил. В наши дни люди чаще употребляют мучные, сладкие кондитерские изделия и мало двигаются. Такой образ жизни ведет к замедлению работы элементов.

Чтобы этого не было, в первую очередь необходимо включить в рацион цитрусовые. В них содержится комплекс витаминов и других важных веществ. Большую роль играет лимонная кислота, содержащаяся в ее составе. Она играет роль в химическом взаимодействии всех ферментов и названа в честь Цикла Кребса.

Прием цитрусовых поможет решить проблему энергетического взаимодействия, также если соблюдать здоровый образ жизни. Нельзя часто принимать в пищу апельсины, мандарины, так как они могут раздражать стенки желудка. Всего понемногу.

Каждому известно, что для нормальной работы организм нуждается в регулярном поступлении целого ряда питательных веществ, которые нужны для здорового метаболизма и, соответственно, баланса процессов выработки и расходования энергии. Процесс выработки энергии, как известно, протекает в митохондриях, которые благодаря этой особенности и получили название энергетических центров клеток. А последовательность химических реакций, которая позволяет получить энергию для работы каждой клеточки тела, называется циклом Кребса.

Цикл Кребса - чудеса, которые происходят в митохондриях

Энергия, получаемая посредством цикла Кребса (также ЦТК - цикл трикарбоновых кислот), идет на нужды отдельных клеток, которые в свою очередь составляют различные ткани и, соответственно, органы и системы нашего организма. Поскольку без энергии организм попросту не может существовать, митохондрии постоянно работают над тем, чтобы бесперебойно поставлять в клетки необходимую им энергию.

Аденозин трифосфат (АТФ) - именно это соединение является универсальным источником энергии, необходимым для протекания всех биохимических процессов в нашем организме.

ЦТК - это центральный метаболический путь, в результате которого завершается окисление метаболитов:

  • жирных кислот;
  • аминокислот;
  • моносахаридов.

В процессе аэробного распада эти биомолекулы расщепляются на меньшие молекулы, которые используются для получения энергии или синтеза новых молекул.

Цикл трикарбоновых кислот состоит из 8 этапов, т.е. реакций:

1. Образование лимонной кислоты:

2. Образование изолимонной кислоты:

3. Дегидрирование и прямое декарбоксилирование изолимонной кислоты.

4. Окислительное декарбоксилирование α-кетоглутаровой кислоты

5. Субстратное фосфорилирование

6. Дегидрирование янтарной кислоты сукцинат-дегидрогеназой

7. Образование яблочной кислоты ферментом фумаразой

8. Образование оксалацетата

Таким образом, после завершения реакций, которые составляют цикл Кребса:

  • одна молекула ацетил-КоА (образованная в результате распада глюкозы) окисляется до двух молекул углекислого газа;
  • три молекулы NAD восстанавливаются до NADH;
  • одна молекула ФАД восстанавливается до ФАДН 2 ;
  • образуется одна молекула ГТФ (эквивалент АТФ).

Молекулы НАДН и ФАДН 2 действуют как переносчики электронов и используются для образования АТФ на следующей стадии метаболизма глюкозы - окислительном фосфорилировании.

Функции цикла Кребса:

  • катаболическая (окисление ацетильных остатков топливных молекул до конечных продуктов обмена);
  • анаболическая (субстраты цикла Кребса - основа для синтеза молекул, в т.ч. аминокислот и глюкозы);
  • интегративная (ЦТК - связующее звено между анаболическими и катаболическими реакциями);
  • водорододонорная (поставка 3 НАДН.Н + и 1 ФАДН 2 на дыхательную цепь митохондрий);
  • энергетическая.

Недостаток элементов, необходимых для нормального протекания цикла Кребса, может привести к серьезным проблемам в организме, связанным с нехваткой энергии.

Благодаря метаболической гибкости организм способен использовать в качестве источника энергии не только глюкозу, но и жиры, расщепление которых также дает молекулы, образующие пировиноградную кислоту (задействуется в цикле Кребса). Таким образом, протекающий надлежащим образом ЦТК обеспечивает получение энергии и строительных блоков для образования новых молекул.

ТРИКАРБОНОВЫХ КИСЛОТ ЦИКЛ – цикл лимонной кислоты или цикл Кребса – широко представленный в организмах животных, растений и микробов путь окислительных превращений ди- и трикарбоновых кислот, образующихся в качестве промежуточных продуктов при распаде и синтезе белков, жиров и углеводов. Открыт Х.Кребсом и У.Джонсоном (1937). Этот цикл является основой метаболизма и выполняет две важных функции – снабжения организма энергией и интеграции всех главных метаболических потоков, как катаболических (биорасщепление), так и анаболических (биосинтез).

Цикл Кребса состоит из 8 стадий (в двух стадиях на схеме выделены промежуточные продукты), в ходе которых происходит:

1) полное окисление ацетильного остатка до двух молекул СО 2 ,

2) образуются три молекулы восстановленного никотинамидадениндинуклеотида (НАДН) и одна восстановленного флавинадениндинуклеотида (ФАДН 2), что является главным источником энергии, производимой в цикле и

3) образуется одна молекула гуанозинтрифосфата (ГТФ) в результате так называемого субстратного окисления.

В целом, путь энргетически выгоден (DG 0 " = –14,8 ккал.)

Цикл Кребса, локализованный в митохондриях, начинается с лимонной кислоты (цитрат) и заканчивается образованием щавелевоуксусной кислоты (оксалоацетата – ОА). К субстратам цикла относятся трикарбоновые кислоты – лимонная, цис-аконитовая, изолимонная, щавелевоянтарная (оксалосукцинат) и дикарбоновые кислоты – 2-кетоглутаровая (КГ), янтарная, фумаровая, яблочная (малат) и щавелевоуксусная. К субстратам цикла Кребса следует отнести и уксусную кислоту, которая в активной форме (т.е. в виде ацетилкофермента А, ацетил-SКоА) участвует в конденсации с щавелевоуксусной кислотой, приводящей к образованию лимонной кислоты. Окисляется именно ацетильный остаток, вошедший в структуру лимонной кислоты, подвергается окислению; атомы углерода окисляются до CO 2 , атомы водорода частично акцептируются коферментами дегидрогеназ, частично в протонированной форме переходят в раствор, то есть в окружающую среду.

Как исходное соединение для образования ацетил-КоА обычно указывается пировиноградная кислота (пируват), образующаяся при гликолизе и занимающая одно из центральных мест в перекрещивающихся путях обмена веществ. Под влиянием фермента сложной структуры – пируватдегидрогеназы (КФ1.2.4.1 – ПДГаза) пирувата окисляется с образованием CO 2 (первое декарбоксилирование), ацетил-КоА и восстановливается НАД (см . схему). Однако окисление пирувата – далеко не единственный путь образования ацетил-КоА, который также является характерным продуктом окисления жирных кислот (фермент тиолаза или синтетаза жирных кислот) и других реакций разложения углеводов и аминокислот. Все ферменты, участвующие в реакциях цикла Кребса, локализованы в митохондриях, причем большинство из них растворимы, а сукцинатдегидрогеназа (КФ1.3.99.1) прочно связана с мембранными структурами.

Образование лимонной кислоты, с синтеза которой и начинается собственно цикл, при помощи цитратсинтазы (КФ4.1.3.7 – конденсирующий фермент на схеме), является реакцией эндергонической (с поглощением энергии), и ее реализация возможна благодаря использованию богатой энергией связи ацетильного остатка с KoA [СН 3 СО~SKoA]. Это главная стадия регуляции всего цикла. Далее следует изомеризация лимонной кислоты в изолимонную через промежуточную стадию образования цис-аконитовой кислоты (фермент аконитаза КФ4.2.1.3, обладает абсолютной стереоспецифичностью – чувствительностью к местоположению водорода). Продуктом дальнейшего превращения изолимонной кислоты под влиянием соответствующей дегидрогеназы (изоцитратдегидрогеназа КФ1.1.1.41) является, по-видимому, щавелевоянтарная кислота, декарбоксилирование которой (вторая молекула CO 2) приводит к КГ. Эта стадия также строго регулируется. По ряду характеристик (высокая молекулярная масса, сложная многокомпонентная структура, ступенчатые реакции, частично те же коферменты и т.д.) КГдегидрогеназа (КФ1.2.4.2) напоминает ПДГазу. Продуктами реакции являются CO 2 (третье декарбоксилирование), Н + и сукцинил-КоА. На этой стадии включается сукцинил-КоА-синтетаза, иначе называемая сукцинаттиокиназой (КФ6.2.1.4), катализирующая обратимую реакцию образования свободного сукцината: Сукцинил-КоА + Р неорг + ГДФ = Сукцинат + KoA + ГТФ. При этой реакции осуществляется так называемое субстратное фосфорилирование, т.е. образование богатого энергией гуанозинтрифосфата (ГТФ) за счет гуанозиндифосфата (ГДФ) и минерального фосфата (Р неорг) с использованием энергии сукцинил-КоА. После образования сукцината вступает в действие сукцинатдегидрогеназа (КФ1.3.99.1) – флавопротеид, приводящий к фумаровой кислоте. ФАД соединен с белковой частью фермента и является метаболически активной формой рибофлавина (витамин В 2). Этот фермент также характеризуется абсолютной стереоспецифичностью элиминирования водорода. Фумараза (КФ4.2.1.2) обеспечивает равновесие между фумаровой кислотой и яблочной (также стереоспецифична), а дегидрогеназа яблочной кислоты (малатдегидрогеназа КФ1.1.1.37, нуждающаяся в коферменте НАД + , также стереоспецифична) приводит к завершению цикла Кребса, то есть к образованию щавелевоуксусной кислоты. После этого повторяется реакция конденсации щавелевоуксусной кислотой с ацетил-КоА, приводящая к образованию лимонной кислоты, и цикл возобновляется.

Сукцинатдегидрогеназа входит в состав более сложного сукцинатдегидрогеназного комплекса (комплекса II) дыхательной цепи, поставляя восстановительные эквиваленты, (НАД-Н 2), образующиеся прив реакции, в дыхательную цепь.

На примере ПДГазы можно познакомиться с принципом каскадной регуляции активности метаболизма за счет фосфорилирования-дефосфорилирования соответствующего фермента специальными киназой и фосфатазой ПДГазы. Обе они присоединены к ПДГазе.

Предполагается, что катализ индивидуальных ферментативных реакций осуществляется в составе надмолекулярного «сверхкомплекса», так называемого «метаболона». Преимущества такой организации ферментов состоят в том, что нет диффузии кофакторов (коферментов и ионов металлов) и субстратов, а это способствует более эффективной работе цикла.

Энергетическая эффективность рассмотренных процессов невелика, однако образующиеся при окислении пирувата и последующих реакциях цикла Кребса 3 моля НАДН и 1 моль ФАДН 2 являются важными продуктами окислительных превращений. Дальнейшее их окисление осуществляется ферментами дыхательной цепи также в митохондриях и сопряжено с фосфорилированием, т.е. образованием АТФ за счет этерификации (образования фосфороорганических эфиров)минерального фосфата. Гликолиз , ферментное действие ПДГазы и цикл Кребса – всего в сумме 19 реакций – определяют полное окисление одной молекулы глюкозы до 6 молекул CO 2 с образованием 38 молекул АТФ – этой разменной «энергетической валюты» клетки. Процесс окисления НАДН и ФАДН 2 ферментами дыхательной цепи энергетически весьма эффективен, происходит с использованием кислорода воздуха, приводит к образованию воды и служит основным источником энергетических ресурсов клетки (более 90%). Однако в его непосредственной реализации ферменты цикла Кребса не участвуют. В каждой клетке человека есть от 100 до 1000 митохондрий, обеспечивающих жизнедеятельность энергией.

В основе интегрирующей функции цикла Кребса в метаболизме лежит то, что углеводы, жиры и аминокислоты из белков могут превращаться в конечном счете в интермедиаты (промежуточные соединения) этого цикла или синтезироваться из них. Выведение интермедиатов из цикла при анаболизме должно сочетаться с продолжением катаболической активности цикла для постоянного образования АТФ, необходимого для биосинтезов. Таким образом, цикл должен одновременно выполнять две функции. При этом концентрация интермедиатов (особенно ОА) может понижаться, что способно привести к опасному понижению производства энергии. Для предотвращения служат «предохранительные клапаны», называемые анаплеротическими реакциями (от греч. «наполнять»). Важнейшей является реакция синтеза ОА из пирувата, осуществляемая пируваткарбоксилазой (КФ6.4.1.1), также локализованной в митохондриях. В результате накапливается большое количество ОА, что обеспечивает синтез цитрата и др. интермедиатов, что позволяет циклу Кребса нормально функционировать и, вместе с тем, обеспечивать выведение интермедиатов в цитоплазму для последующих биосинтезов. Таким образом, на уровне цикла Кребса происходит эффективно скоординированная интеграция процессов анаболизма и катаболизма под действием многочисленных и тонких регуляторных механизмов, в том числе гормональных.

В анаэробных условиях вместо цикла Кребса функционируют его окислительная ветвь до КГ (реакции 1, 2, 3) и восстановительная – от ОА до сукцината (реакции 8®7®6). При этом много энергии не запасается и цикл поставляет только интермедиаты для клеточных синтезов.

При переходе организма от покоя к активности возникает потребность в мобилизации энергии и обменных процессов. Это, в частности, достигается у животных шунтированием наиболее медленных реакций (1–3) и преимущественным окислением сукцината. При этом КГ – исходный субстрат укороченного цикла Кребса – образуется в реакции быстрого переаминирования (переноса аминной группы)

Глутамат + ОА = КГ + аспартат

Другая модификация цикла Кребса (так называемый 4-аминобутиратный шунт) – это превращение КГ в сукцинат через глутамат, 4-аминобутират и янтарный семиальдегид (3-формилпропионовую кислоту). Эта модификация важна в ткани мозга, где около 10% глюкозы расщепляется по этому пути.

Тесное сопряжение цикла Кребса с дыхательной цепью, особенно в митохондриях животных, а также ингибирование большинства ферментов цикла под действием АТФ, предопределяют снижение активности цикла при высоком фосфорильном потенциале клетки, т.е. при высоком соотношении концентраций АТФ/АДФ. У большинства растений, бактерий и многих грибов тесное сопряжение преодолевается развитием несопряженных альтернативных путей окисления, позволяющих поддерживать одновременно дыхательную активность и активность цикла на высоком уровне даже при высоком фосфорильном потенциале.

Игорь Рапанович

Цикл трикарбоновых кислот

Ци́кл трикарбо́новых кисло́т (цикл Кре́бса , цитра́тный цикл ) - центральная часть общего пути катаболизма , циклический биохимический аэробный процесс, в ходе которого происходит превращение двух- и трёхуглеродных соединений, образующихся как промежуточные продукты в живых организмах при распаде углеводов, жиров и белков, до CO 2 . При этом освобождённый водород направляется в цепь тканевого дыхания, где в дальнейшем окисляется до воды, принимая непосредственное участие в синтезе универсального источника энергии - АТФ .

Цикл Кребса - это ключевой этап дыхания всех клеток , использующих кислород, центр пересечения множества метаболических путей в организме. Кроме значительной энергетической роли циклу отводится также и существенная пластическая функция, то есть это важный источник молекул-предшественников, из которых в ходе других биохимических превращений синтезируются такие важные для жизнедеятельности клетки соединения как аминокислоты, углеводы, жирные кислоты и др.

Функции

  1. Интегративная функция - цикл является связующим звеном между реакциями анаболизма и катаболизма.
  2. Катаболическая функция - превращение различных веществ в субстраты цикла:
    • Жирные кислоты, пируват,Лей,Фен - Ацетил-КоА.
    • Арг, Гис, Глу - α-кетоглутарат.
    • Фен, тир - фумарат.
  3. Анаболическая функция - использование субстратов цикла на синтез органических веществ:
    • Оксалацетат - глюкоза , Асп, Асн.
    • Сукцинил-КоА - синтез гема.
    • CО 2 - реакции карбоксилирования.
  4. Водорододонорная функция - цикл Кребса поставляет на дыхательную цепь митохондрий протоны в виде трех НАДН.Н + и одного ФАДН 2 .
  5. Энергетическая функция - 3 НАДН.Н + дает 7.5 моль АТФ, 1 ФАДН 2 дает 1.5 моль АТФ на дыхательной цепи. Кроме того в цикле путем субстратного фосфорилирования синтезируется 1 ГТФ, а затем из него синтезируется АТФ посредствам трансфосфорилирования: ГТФ + АДФ = АТФ + ГДФ.

Мнемонические правила

Для более легкого запоминания кислот, участвующих в цикле Кребса, существует мнемоническое правило:

Целый Ананас И Кусочек Суфле Сегодня Фактически Мой Обед , что соответствует ряду - цитрат, (цис-)аконитат, изоцитрат, (альфа-)кетоглутарат, сукцинил-CoA, сукцинат, фумарат, малат, оксалоацетат.

Существует также следующее мнемоническое стихотворение (его автором является ассистент кафедры биохимии КГМУ Е. В. Паршкова ):

Щук у ацетил лимон ил, Но нарцис са кон ь боялся, Он над ним изолимон но Альфа-кетоглутар ался. Сукцинил ся коэнзим ом, Янтар ился фумар ово, Яблоч ек припас на зиму, Обернулся щук ой снова.

(щавелевоуксусная кислота, лимонная кислота, цис-аконитовая кислота, изолимонная кислота, α-кетоглутаровая кислота, сукцинил-KoA, янтарная кислота, фумаровая кислота, яблочная кислота, щавелевоуксусная кислота).

Другой вариант стихотворения

ЩУКа съела ацетат, получается цитрат через цис-аконитат будет он изоцитрат водороды отдав НАД, он теряет СО 2 этому безмерно рад альфа-кетоглутарат окисление грядет - НАД похитил водород ТДФ, коэнзимА забирают СО 2 а энергия едва в сукциниле появилась сразу ГТФ родилась и остался сукцинат вот добрался он до ФАДа - водороды тому надо фумарат воды напился, и в малат он превратился тут к малату НАД пришел, водороды приобрел ЩУКа снова объявилась и тихонько затаилась Караулить ацетат...

Примечания

Ссылки

  • Цикл трикарбоновых кислот (англ.)

Публикации по теме