Кпд электростанций в мире. Атомная электростанция. Типы питательных насосов

Атомная электростанция по своей сути ничем не отличается от ТЭС кроме как топливом. Для выработки используется ядерное топливо природного или искусственного происхождения. К природным можно отнести уран, добытый в глубоких шахтах естественным путем, а искусственным можно считать вторичное сырье, прошедшее специальную обработку. С точки зрения химии искусственным топливом может быть металлическая или карбидная, оксидная или нитритная, а возможно и смешанное.

Электрическая мощность атомной электростанции - формула

Так как наше государство является одним из шести стран, где добывается львиная доля урана, то и основным топливом для является данный элемент.

Принцип работы

После трагических событий на средства массовой информации активно распространялись слухи и внушали в подсознание граждан, будто любая электростанция, производящие энергию на атомном топливе рано или поздно приведет к взрыву и негативное воздействие на людей и окружающую среду. Самая высокая вырабатывается на Балаковской установке. Но многие ученые утверждают, что вероятность взрыва или любого другого вреда от Балаковской АЭС не больше чем от любого промышленного, производственного предприятия. Всё дело в том, что для выработки энергии необходимо тепло, которое получают в результате цепного ряда действия и реакции деление на атомы одного из вариантов ядерного топлива, чаще всего это Уран. Этот процесс считается основным рабочим на всей территории любой АЭС.

Типы реактивных двигателей

Все установки делятся на категории по используемому топливу для выработки энергии, по теплоносителю, замедлители, которая контролирует весь процесс проведения реакции. Для того чтобы показывать высокий уровень результативности, многие реакторы используют облегченную воду в виде Пара которая воздействует двумя разными способами.

Первый способ это подача теплого пара непосредственно в активной зоне. Уровень температуры такого энергоблока очень высок, в народе его называют кипящим блоком. Второй зависит от графитных материалов, с помощью которых вырабатывается газ, позволяющий отслеживать всю работу системы. На таком типе работы существует Балаковская станция.

История развития и строительства АЭС

Первым вариантом использования ядерного топлива для выработки энергии был осуществлен в лаборатории на территории Айдахо (вначале 1950-х, в США). Прототип выдавал мощность, которой хватало для работы четырёх ламп накаливания по 200Вт каждая. В ходе разработок, такая система смогла уже целое сооружение в несколько этажей. Пройдя сотни исследований и реакций, только в 1955 году такой реактор был подключен к целой сети, прославив город Арко по всему миру, как место расположения первого на свете реактора на ядерной энергии.

Но в то время, пока американцы проводили опыты и наблюдения, русские запустили на год раньше в 1954 году в городе Обнинске (СССР, Калужская область) атомной электростанции с мощностью в несколько раз большей. Именно с этого момента началось активное производства атомной энергетики россиян. Далее, спустя пару-тройку лет стали возводиться атомные станции как грибы, в течение следующих 10−15 лет советские граждане возвели 17 атомных станций.

Энергетические выработки ядерной системы

Какова электрическая мощность атомной электростанции ? На этот вопрос невозможно ответить однозначно, так как все АЭС в России имеют самые различные мощности от 48 мВт и до 4000 мВт. Последняя цифра достигается, в случае если атомная электростанция мощностью 1000 имеет по 4 реактора. Основное их количество работает на водяной системе, именуемой ВВЭР. Такой тип реактора самый распространенный в нашей стране (всего насчитывает порядка 18 единиц), из них с тысячной цифрой - 12 единиц. Не исключается также использование и кипящих систем канального типа. Таких реакторов в РФ всего 15.

Вода применима не только для энергетической или гетерогенной системы работы реактора, но и для водо-водяной или корпусной. Также, с помощью воды реактор во взаимодействии с тепловыми нейронами может быть применим как отражатель и замедлитель, а возможно и теплоноситель нейтронов.

Кстати, атомная электростанция мощностью 1000 имеет (кпд 20), с каждым реактором по 1000 мВт, является наиболее распространенной моделью не только в нашем государстве, но и в мире. Такого типа сооружений 7% в мире от общего количества.

Разновидности дизельных ЭС

Дизельная электростанция с мощностью необходимой под индивидуальные нужды является отличным вариантом для обеспечения электричеством отдаленного селения или конкретного дома от линий электропередач. Нередко сельские жители и владельцы кафе, магазинов предпочитают иметь дома и по необходимости устанавливать дизельный агрегат для выработки света на случай экстренных условий или общего отключения линейного электричества.

Приобретая такое изделие за не малые деньги, необходимо заранее определиться:

  • нужна подстанция передвижная или стационарная;
  • каков КПД (коэффициент полезного действия) необходим для подключения всего самого необходимого;
  • какой расход топлива и достаточно ли он экономно употребляется системой;
  • сверить комплектацию.

Средняя мощность для типичного дома без электроотопления и чрезмерного потребления составляет 5 кВт, а вот если необходимостей гораздо больше - то обеспечит электрическое отопление в зимний период.

Разновидности ЭС и их приоритеты

Установка преимущественно экономична (относительно ). А вот потребляет сырья для работы почти в 2 раза меньше, но выдает КПД станция, равнозначный по объему, как для дизельной, так и для бензиновой системы.

Наиболее экономичным способом организовать освещение в доме - это установить мощностью от 2 кВт и выше. Стоит заметить, что основой работы является яркое солнце, попадающее внутрь. Солнечная система, вполне может обеспечить собственные жилые помещения светом только в случае яркого солнечного дня.

Каковы масштабы выработки электроэнергии в РФ

Российская Федерация уверенно движется вперед по развитию своей энергетики, к тому же это позволяет делать наличие продуктивно работающих урановых шахт. Ввиду активного роста, все энергетические системы объединены в географические группы. В сотрудничестве с европейскими странами действуют 7 ОЭС, одновременно работают 6 энергетических объединений на территории всего государства: Центр, Урал, Волга, Сибирь, Северо-Запад и Юг. В дополнение имеется параллельная структура Востока, электрическая мощность этой электростанции транзитом обеспечивается Сибирским направлением.

В 2016 году на учет принято объединения Севастополя (Крым). На начало 2017 года в нашей стране действует порядка 700 электрических станций с разным видом обеспечения жизнедеятельности. А установленная мощность электростанций России за прошлый год отметку в 236 ГВт.

А́ТОМНАЯ ЭЛЕКТРОСТА́НЦИЯ (АЭС), элек­тро­стан­ция, на ко­то­рой для по­лу­че­ния элек­тро­энер­гии ис­поль­зу­ет­ся те­п­ло­та, вы­де­ляю­щая­ся в ядер­ном ре­ак­то­ре в ре­зуль­та­те кон­тро­ли­руе­мой цеп­ной ре­ак­ции де­ле­ния ядер тя­жё­лых эле­мен­тов (в осн. $\ce{^{233}U, ^{235}U, ^{239}Pu}$ ). Те­п­ло­та, об­ра­зую­щая­ся в ак­тив­ной зо­не ядер­но­го ре­ак­то­ра, пе­ре­да­ёт­ся (не­по­сред­ст­вен­но ли­бо че­рез про­ме­жу­точ­ный те­п­ло­но­си­тель ) ра­бо­че­му те­лу (пре­им. во­дя­но­му па­ру), ко­то­рое при­во­дит в дей­ст­вие па­ро­вые тур­би­ны с тур­бо­ге­не­ра­то­ра­ми.

АЭC в принципе является аналогом обычной тепловой электростанции (ТЭС), в которой вместо топки парового котла используется ядерный реактор. Однако при сходстве принципиальных термодинамических схем ядерных и тепловых энергоустановок между ними есть и существенные различия. Основными из них являются экологические и экономические преимущества АЭС перед ТЭС: АЭС не нуждаются в кислороде для сжигания топлива; они практически не загрязняют окружающую среду сернистыми и др. газами; ядерное топливо имеет значительно более высокую теплотворную способность (при делении 1г изотопов U или Pu высвобождается 22 500 кВт∙ч, что эквивалентно энергии, содержащейся в 3000 кг каменного угля), что резко сокращает его объёмы и расходы на транспортировку и обращение; мировые энергетические ресурсы ядерного топлива существенно превышают природные запасы углеводородного топлива. Кроме того, применение в качестве источника энергии ядерных реакторов (любого типа) требует изменения тепловых схем, принятых на обычных ТЭС, и введения в структуру АЭС новых элементов, напр. биологич. защиты (см. Радиационная безопасность ), системы перегрузки отработанного топлива, бассейна выдержки топлива и др. Передача тепловой энергии от ядерного реактора к паровым турбинам осуществляется посредством теплоносителя, циркулирующего по герметичным трубопроводам, в сочетании с циркуляционными насосами, образующими т. н. реакторный контур или петлю. В качестве теплоносителей применяют обычную и тяжёлую воду, водяной пар, жидкие металлы, органические жидкости, некоторые газы (например, гелий, углекислый газ). Контуры, по которым циркулирует теплоноситель, всегда замкнуты во избежание утечки радиоактивности, их число определяется в основном типом ядерного реактора, а также свойствами рабочего тела и теплоносителя.

На АЭС с одноконтурной схемой (рис., а ) теплоноситель является также и рабочим телом, весь контур радиоактивен и потому окружён биологической защитой. При использовании в качестве теплоносителя инертного газа, например гелия, который не активируется в нейтронном поле активной зоны, биологическая защита необходима только вокруг ядерного реактора, поскольку теплоноситель не радиоактивен. Теплоноситель – рабочее тело, нагреваясь в активной зоне реактора, затем поступает в турбину, где его тепловая энергия преобразуется в механическую и далее в электрогенераторе – в электрическую. Наиболее распространены одноконтурные АЭС с ядерными реакторами, в которых теплоносителем и замедлителем нейтронов служит вода. Рабочее тело образуется непосредственно в активной зоне при нагревании теплоносителя до кипения. Такие реакторы называют кипящими, в мировой ядерной энергетике они обозначаются как BWR (Boiling Water Reactor). В России получили распространение кипящие реакторы с водяным теплоносителем и графитовым замедлителем – РБМК (реактор большой мощности канальный). Перспективным считается использование на АЭС высокотемпературных газоохлаждаемых реакторов (с гелиевым теплоносителем) – ВТГР (HTGR). Кпд одноконтурных АЭС, работающих в закрытом газотурбинном цикле, может превышать 45–50%.

При двухконтурной схеме (рис., б ) нагретый в активной зоне теплоноситель первого контура передаёт в парогенераторе (теплообменнике ) тепловую энергию рабочему телу во втором контуре, после чего циркуляционным насосом возвращается в активную зону. Первичным теплоносителем может быть вода, жидкий металл или газ, а рабочим телом вода, превращающаяся в водяной пар в парогенераторе. Первый контур радиоактивен и окружается биологической защитой (кроме тех случаев, когда в качестве теплоносителя используется инертный газ). Второй контур обычно радиационно безопасен, поскольку рабочее тело и теплоноситель первого контура не соприкасаются. Наибольшее распространение получили двухконтурные АЭС с реакторами, в которых первичным теплоносителем и замедлителем служит вода, а рабочим телом – водяной пар. Этот тип реакторов обозначают как ВВЭР – водо-водяной энергетич. реактор (PWR – Power Water Reactor). Кпд АЭС с ВВЭР достигает 40%. По термодинамической эффективности такие АЭС уступают одноконтурным АЭС с ВТГР, если температура газового теплоносителя на выходе из активной зоны превышает 700 °С.

Трёхконтурные тепловые схемы (рис., в ) применяют лишь в тех случаях, когда необходимо полностью исключить контакт теплоносителя первого (радиоактивного) контура с рабочим телом; например, при охлаждении активной зоны жидким натрием его контакт с рабочим телом (водяным паром) может привести к крупной аварии. Жидкий натрий как теплоноситель применяют только в ядерных реакторах на быстрых нейтронах (FBR – Fast Breeder Reactor). Особенность АЭС с реактором на быстрых нейтронах состоит в том, что одновременно с выработкой электрической и тепловой энергии они воспроизводят делящиеся изотопы, пригодные для использования в тепловых ядерных реакторах (см. Реактор-размножитель ).

Турбины АЭС обычно работают на насыщенном или слабоперегретом паре. При использовании турбин, работающих на перегретом паре, насыщенный пар для повышения температуры и давления пропускают через активную зону реактора (по особым каналам) либо через специальный теплообменник – пароперегреватель, работающий на углеводородном топливе. Термодинамическая эффективность цикла АЭС тем выше, чем выше параметры теплоносителя, рабочего тела, которые определяются технологическими возможностями и свойствами конструкционных материалов, применяемых в контурах охлаждения АЭС.

На АЭС боль­шое вни­ма­ние уде­ля­ют очи­ст­ке те­п­ло­но­си­те­ля, по­сколь­ку имею­щие­ся в нём ес­тественные при­ме­си, а так­же про­дук­ты кор­ро­зии, на­ка­п­ли­ваю­щие­ся в про­цес­се экс­плуа­та­ции обо­ру­до­ва­ния и тру­бо­про­во­дов, яв­ля­ют­ся ис­точ­ни­ка­ми ра­дио­ак­тив­но­сти. Сте­пень чис­то­ты те­п­ло­но­си­те­ля во мно­гом оп­ре­де­ля­ет уро­вень ра­ди­ационной об­ста­нов­ки в по­ме­ще­ни­ях АЭС.

АЭС прак­ти­че­ски все­гда стро­ят вбли­зи по­тре­би­те­лей энер­гии, т. к. рас­хо­ды на транс­пор­ти­ров­ку ядер­но­го то­п­ли­ва на АЭС, в от­ли­чие от уг­ле­во­до­род­но­го то­п­ли­ва для ТЭС, ма­ло влия­ют на се­бе­стои­мость вы­ра­ба­ты­вае­мой энер­гии (обыч­но ядер­ное то­п­ли­во в энер­ге­тич. ре­ак­то­рах за­ме­ня­ют на но­вое один раз в неск. лет), а пе­ре­да­ча как элек­трической, так и те­п­ло­вой энер­гии на боль­шие рас­стоя­ния за­мет­но по­вы­ша­ет их стои­мость. АЭС со­ору­жа­ют с под­вет­рен­ной сто­ро­ны от­но­си­тель­но бли­жай­ше­го на­се­лён­но­го пунк­та, во­круг неё соз­да­ют са­ни­тар­но-за­щит­ную зо­ну и зо­ну на­блю­де­ния, где про­жи­ва­ние на­се­ле­ния не­до­пус­ти­мо. В зо­не на­блю­де­ния раз­ме­ща­ют кон­троль­но-из­ме­ри­тель­ную ап­па­ра­ту­ру для по­сто­ян­но­го мо­ни­то­рин­га ок­ру­жаю­щей сре­ды.

АЭС – ос­но­ва ядер­ной энер­ге­ти­ки . Глав­ное их на­зна­че­ние – про­изводство элек­тро­энер­гии (АЭС кон­ден­са­ци­он­но­го ти­па) или ком­би­нированное про­изводство элек­тро­энер­гии и те­п­ла (атом­ные те­п­ло­элек­тро­цен­тра­ли – АТЭЦ). На АТЭЦ часть от­ра­бо­тав­ше­го в тур­би­нах па­ра от­во­дит­ся в т. н. се­те­вые те­п­ло­об­мен­ни­ки для на­гре­ва­ния во­ды, цир­ку­ли­рую­щей в замк­ну­тых се­тях те­п­ло­снаб­же­ния. В отдельных слу­ча­ях те­п­ло­вая энер­гия ядер­ных ре­ак­то­ров мо­жет ис­поль­зо­вать­ся толь­ко для нужд те­п­ло­фи­ка­ции (атом­ные стан­ции те­п­ло­снаб­же­ния – АСТ). В этом слу­чае на­гре­тая во­да из те­п­ло­об­мен­ни­ков пер­во­го-вто­ро­го кон­ту­ров по­сту­па­ет в се­те­вой те­п­ло­об­мен­ник, где от­да­ёт те­п­ло се­те­вой во­де и за­тем воз­вра­ща­ет­ся в кон­тур.

Од­но из пре­иму­ществ АЭС по срав­не­нию с обыч­ны­ми ТЭС – их вы­со­кая эко­ло­гич­ность, со­хра­няю­щая­ся при ква­ли­фи­цир. экс­плуа­та­ции ядер­ных ре­ак­то­ров. Су­ще­ст­вую­щие барь­е­ры ра­ди­ационной безо­пас­но­сти АЭС (обо­лоч­ки твэ­лов, кор­пус ядер­но­го ре­ак­то­ра и т. п.) пред­от­вра­ща­ют за­гряз­не­ние те­п­ло­но­си­те­ля ра­дио­ак­тив­ны­ми про­дук­та­ми де­ле­ния. Над ре­ак­тор­ным за­лом АЭС воз­во­дит­ся за­щит­ная обо­лоч­ка (кон­тей­мент) для ис­клю­че­ния по­па­да­ния в ок­ру­жаю­щую сре­ду ра­дио­ак­тив­ных ма­те­риа­лов при са­мой тя­жё­лой ава­рии – раз­гер­ме­ти­за­ции пер­во­го кон­ту­ра, рас­плав­ле­нии ак­тив­ной зо­ны. Под­го­тов­ка пер­со­на­ла АЭС пре­ду­смат­ри­ва­ет обу­че­ние на специальных тре­на­жё­рах (ими­та­то­рах АЭС) для от­ра­бот­ки дей­ст­вий как в штат­ных, так и в ава­рий­ных си­туа­ци­ях. На АЭС име­ется ряд служб, обес­пе­чи­ваю­щих нор­маль­ное функ­цио­ни­ро­ва­ние стан­ции, безо­пас­ность её пер­со­на­ла (напр., до­зи­мет­рический кон­троль, обес­пе­че­ние са­ни­тар­но-ги­гие­нических тре­бо­ва­ний и др.). На тер­ри­то­рии АЭС соз­да­ют временные хра­ни­ли­ща для све­же­го и от­ра­бо­тан­но­го ядер­но­го то­п­ли­ва, для жид­ких и твёр­дых ра­дио­ак­тив­ных от­хо­дов, по­яв­ляю­щих­ся при её экс­плуа­та­ции. Всё это при­во­дит к то­му, что стои­мость ус­та­нов­лен­но­го ки­ло­ват­та мощ­но­сти на АЭС бо­лее чем на 30% пре­вы­ша­ет стои­мость ки­ло­ват­та на ТЭС. Од­на­ко стои­мость от­пус­кае­мой по­тре­би­те­лю энер­гии, вы­ра­бо­тан­ной на АЭС, ни­же, чем на ТЭС, из-за очень ма­лой до­ли в этой стои­мо­сти то­п­лив­ной со­став­ляю­щей. Вслед­ст­вие вы­со­кой эко­но­мич­но­сти и осо­бен­но­стей ре­гу­ли­ро­ва­ния мощ­но­сти АЭС обыч­но ис­поль­зу­ют в ба­зо­вых ре­жи­мах, при этом ко­эффициент ис­поль­зо­ва­ния ус­та­нов­лен­ной мощ­но­сти АЭС мо­жет пре­вы­шать 80%. По ме­ре уве­ли­че­ния до­ли АЭС в об­щем энер­ге­тическом ба­лан­се ре­гио­на они мо­гут ра­бо­тать и в ма­нёв­рен­ном ре­жи­ме (для по­кры­тия не­рав­но­мер­но­стей на­груз­ки в ме­ст­ной энер­го­сис­те­ме). Спо­соб­ность АЭС ра­бо­тать дли­тель­ное вре­мя без сме­ны то­п­ли­ва по­зво­ля­ет ис­поль­зо­вать их в уда­лён­ных ре­гио­нах. Раз­ра­бо­та­ны АЭС, ком­по­нов­ка обо­ру­до­ва­ния ко­то­рых ос­но­ва­на на прин­ци­пах, реа­ли­зуе­мых в су­до­вых ядер­ных энер­ге­тич. ус­та­нов­ках (см. Ато­мо­ход ). Та­кие АЭС мож­но раз­мес­тить, напр., на бар­же. Пер­спек­тив­ны АЭС с ВТГР, вы­ра­ба­ты­ваю­щие те­п­ло­вую энер­гию для осу­ще­ст­в­ле­ния тех­но­ло­гических про­цес­сов в ме­тал­лур­гическом, хи­мическом и неф­тяном про­из­вод­ст­вах, при га­зи­фи­ка­ции уг­ля и слан­цев, в про­изводстве син­те­тического угле­во­до­род­но­го то­п­ли­ва. Срок экс­плуа­та­ции АЭС 25–30 лет. Вы­вод АЭС из экс­плуа­та­ции, де­мон­таж ре­ак­то­ра и ре­куль­ти­ва­ция её пло­щад­ки до со­стоя­ния «зе­лё­ной лу­жай­ки» – слож­ное и до­ро­го­стоя­щее ор­га­ни­за­ци­он­но-тех­ническое ме­ро­прия­тие, осу­ще­ст­в­ляе­мое по раз­ра­ба­ты­вае­мым в ка­ж­дом кон­крет­ном слу­чае пла­нам.

Первая в мире действующая АЭС мощностью 5000 кВт пущена в России в 1954 в г. Обнинск. В 1956 вступила в строй АЭС в Колдер-Холле в Великобритании (46 МВт), в 1957 – АЭС в Шиппингпорте в США (60 МВт). В 1974 пущена первая в мире АТЭЦ – Билибинская (Чукотский автономный окр.). Массовое строительство крупных экономичных АЭС началось во 2-й пол. 1960-х гг. Однако после аварии (1986) на Чернобыльской АЭС привлекательность ядерной энергетики заметно снизилась, а в ряде стран, имеющих достаточные собственные традиционные топливно-энергетические ресурсы или доступ к ним, строительство новых АЭС фактически прекратилось (Россия, США, Великобритания, ФРГ). В начале 21в., 11.3.2011 в Тихом океане у восточного побережья Японии в результате сильнейшего землетрясения магнитудой от 9,0 до 9,1 и последовавшего за ним цунами (высота волн достигала 40,5 м) на АЭС « Фукусима1 » (посёлок Окума, префектура Фукусима) произошла крупнейшая техногенная катастрофа – радиационная авария максимального 7-го уровня по Международной шкале ядерных событий. Удар цунами вывел из строя внешние средства электроснабжения и резервные дизельные генераторы, что явилось причиной неработоспособности всех систем нормального и аварийного охлаждения и привело к расплавлению активной зоны реакторов на энергоблоках 1, 2 и 3 в первые дни развития аварии. В декабре 2013 АЭС была официально закрыта. По состоянию на первую половину 2016 высокий уровень излучения делает невозможной работу не только людей в реакторных зданиях, но и роботов, которые из-за высокого уровня радиации выходят из строя. Планируется, что вывоз пластов почвы в специальные хранилища и её уничтожение займут 30 лет.

31 страна мира использует АЭС. На 2015 действует ок. 440 ядерных энергетических реакторов (энергоблоков) суммарной мощностью более 381 тыс. МВт (381 ГВт). Ок. 70 атомных реакторов находятся в стадии строительства. Мировым лидером по доле в общей выработке электроэнергии является Франция (второе место по установленной мощности), в которой ядерная энергетика составляет 76,9%.

Крупнейшая АЭС в мире на 2015 (по установленной мощности) – Касивадзаки-Карива (г. Касивадзаки, префектура Ниигата, Япония). В эксплуатации находятся 5 кипящих ядерных реакторов (BWR) и 2 улучшенных кипящих ядерных реактора (ABWR), суммарная мощность которых составляет 8212 МВт (8,212 ГВт).

Крупнейшая АЭС в Европе – Запорожская АЭС (г. Энергодар, Запорожская область, Украина). С 1996 работают 6 энергоблоков с реакторами типа ВВЭР-1000 суммарной мощностью 6000 МВт (6 ГВт).

Таблица 1. Крупнейшие потребители ядерной энергетики в мире
Государство Количество энергоблоков Суммарная мощность (МВт) Суммарная вырабатываемая
электроэнергия (млрд. кВт·ч/год)
США 104 101 456 863,63
Франция 58 63 130 439,74
Япония 48 42 388 263,83
Россия 34 24 643 177,39
Южная Корея 23 20 717 149,2
Китай 23 19 907 123,81
Канада 19 13 500 98,59
Украина 15 13 107 83,13
Германия 9 12 074 91,78
Великобритания 16 9373 57,92

США и Япония ведут разработки мини-АЭС, мощностью порядка 10–20 МВт для тепло- и электроснабжения отдельных производств, жилых комплексов, а в перспективе – и индивидуальных домов. Малогабаритные реакторы создаются с использованием безопасных технологий, многократно уменьшающих возможность утечки ядерного вещества.

В России на 2015 действует 10 АЭС, на которых эксплуатируются 34 энергоблока общей мощностью 24 643 МВт (24,643 ГВт), из них 18 энергоблоков с реакторами типа ВВЭР (из них 11 энергоблоков ВВЭР-1000 и 6 энергоблоков ВВЭР-440 различных модификаций); 15 энергоблоков с канальными реакторами (11 энергоблоков с реакторами типа РБМК-1000 и 4 энергоблока с реакторами типа ЭГП-6 – Энергетический Гетерогенный Петлевой реактор с 6 петлями циркуляции теплоносителя, электрической мощностью 12 МВт); 1 энергоблок с реактором на быстрых нейтронах с натриевым охлаждением БН-600 (в процессе ввода в промышленную эксплуатацию находится 1 энергоблок БН-800). Согласно Федеральной целевой программе «Развитие атомного энергопромышленного комплекса России», к 2025 доля электроэнергии, выработанной на атомных электростанциях РФ, должна увеличиться с 17 до 25% и составить ок. 30,5 ГВт. Планируется построить 26 новых энергоблоков, 6 новых АЭС, две из которых – плавучие (табл. 2).

Таблица 2. АЭС, действующие на территории РФ
Наименование АЭС Количество энергоблоков Годы ввода в эксплуа-тацию энерго-блоков Суммарная установ-ленная мощность (МВт) Тип реактора
Балаковская АЭС (близ г. Балаково) 4 1985, 1987, 1988, 1993 4000 ВВЭР-1000
Калининская АЭС [в 125 км от Твери на берегу реки Удомля (Тверская обл.)] 4 1984, 1986, 2004, 2011 4000 ВВЭР-1000
Курская АЭС (близ г. Курчатов на левом берегу реки Сейм) 4 1976, 1979, 1983, 1985 4000 РБМК-1000
Ленинградская АЭС (близ г. Сосновый Бор) 4 в стадии строительства – 4 1973, 1975, 1979, 1981 4000 РБМК-1000 (первая в стране станция с реакторами этого типа)
Ростовская АЭС (расположена на берегу Цимлянского водохранилища, в 13,5 км от г. Волгодонск) 3 2001, 2010, 2015 3100 ВВЭР-1000
Смоленская АЭС (в 3 км от города-спутника Десногорск) 3 1982, 1985, 1990 3000 РБМК-1000
Нововоронежская АЭС (близ г. Нововоронеж) 5; (2 – выведены), в стадии строительства – 2. 1964 и 1969 (выведены), 1971, 1972, 1980 1800 ВВЭР-440;
ВВЭР-1000
Кольская АЭС (в 200 км к югу от г. Мурманск на берегу озера Имандра) 4 1973, 1974, 1981, 1984 1760 ВВЭР-440
Белоярская АЭС (близ г. Заречный) 2 1980, 2015 600
800
БН-600
БН-800
Билибинская АЭС 4 1974 (2), 1975, 1976 48 ЭГП-6

Проектируемые АЭС в РФ

С 2008 по новому проекту АЭС-2006 (проект российской атомной станции нового поколения «3+» с улучшенными технико-экономическими показателями) строится Нововоронежская АЭС-2 (близ Нововоронежской АЭС), на которой предусматривается использование реакторов ВВЭР-1200. Ведётся сооружение 2 энергоблоков общей мощностью 2400 МВт, в дальнейшем планируется построить ещё 2. Пуск первого блока (блок № 6) Нововоронежской АЭС-2 состоялся в 2016, второго блока № 7 запланирован на 2018.

Балтийская АЭС предусматривает использование реакторной установки ВВЭР-1200 мощностью 1200 МВт; энергоблоков – 2. Суммарная установленная мощность 2300 МВт. Ввод в эксплуатацию первого блока планируется в 2020. Федеральным агентством по атомной энергии России ведётся проект по созданию плавучих атомных электростанций малой мощности. Строящаяся АЭС «Академик Ломоносов» станет первой в мире плавучей атомной электростанцией. Плавучая станция может использоваться для получения электрической и тепловой энергии, а также для опреснения морской воды. В сутки она может выдавать от 40 до 240 тыс. м 2 пресной воды. Установленная электрическая мощность каждого реактора – 35 МВт. Ввод станции в эксплуатацию планируется в 2018.

Международные проекты России по атомной энергетике

23.9.2013 Россия передала Ирану в эксплуатацию АЭС «Бушер» («Бушир») , близ г. Бушир (остан Бушир); количество энергоблоков – 3 (1 построен, 2 – в стадии сооружения); тип реактора – ВВЭР-1000. АЭС «Куданкулам», близ г. Куданкулам (штат Тамилнад, Индия); количество энергоблоков – 4 (1 – в эксплуатации, 3 – в стадии сооружения); тип реактора – ВВЭР-1000. АЭС «Akkuyu», близ г. Мерсин (иль Мерсин, Турция); количество энергоблоков – 4 (в стадии сооружения); тип реактора – ВВЭР-1200; Белорусская АЭС (г. Островец, Гродненская область, Белоруссия); количество энергоблоков – 2 (в стадии сооружения); тип реактора – ВВЭР-1200. АЭС «Hanhikivi 1» (мыс Ханхикиви, область Похйойс-Похьянмаа, Финляндия); количество энергоблоков – 1 (в стадии сооружения); тип реактора – ВВЭР-1200.

Массовая энергонапряженность

Объемная энергонапряженность.

2 Тепловые схемы АЭС

Основное технологическое оборудование

2.1.Типы атомных станций

В настоящее время практически все стации работают как конденсационные, т. е. в качестве рабочей среды используется водяной пар.

Атомные электрические станции АЭС – предназначены для коммерческого производства электрической энергии, но на практике они в той или иной мере производят отпуск тепловой энергии сторонним организациям, но доля его намного меньше затрат на получение электроэнергии. АЭС предназначенные не только для производства электроэнергии, но и для выработки тепла называют АТЭЦ (атомная тепловая электроцентраль), классический пример – Билибинская. Кроме того, существуют ядерные энергетические установки, предназначенные только для отпуска тепловой энергии – АСТ (атомные станции теплоснабжения).

В системе любой станции различают теплоноситель и рабочее тело. Для АЭС рабочим телом является среда, с помощью которой тепловая энергия переходит в механическую (в большинстве АЭС рабочим телом является водяной пар). Однако с точки зрения термодинамики существенно выгоднее использовать в качестве рабочего тела газовые среды.

Назначение теплоносителя – отводить тепло при освобождении внутриядерной энергии. При этом необходим замкнутый контур теплоносителя по следующим причинам:

· теплоноситель активируется;

· требуется высокая чистота теплоносителя, поскольку любые отложения на поверхности ТВЭЛ приводят к существенному увеличению температуры оболочек твэл. В этой связи основная классификация АЭС зависит от числа контуров.

2.1.1 Одноконтурные АЭС

В общем случае, для любой ядерно-энергетической установки можно выделить контур теплоносителя и контур рабочего тела. Если два этих контура совмещены, то такая АЭС называется одноконтурной. В активной зоне ядерного реактора происходит парообразование, но вода только частично превращается в пар, что обусловлено нейтронной физикой. Пар и вода разделяются либо в самом корпусе реактора, либо в барабан сепараторе, далее пар поступает на турбину, конденсируется и возвращается в реактор. Приведем упрощенную схему такой одноконтурной АЭС.

Рис.2.1. Упрощенная схема одноконтурной АЭС.

1 – реактор с кипением и внутри корпусным разделением паровой и жидкой фаз; 2 – паровая турбина; 3 – электрический генератор; 4 – конденсатор (чтобы увеличить перепад давления на турбине давление в конденсаторе должно быть меньше атмосферного); 5 – конденсатный насос; 6 – циркуляционный насос.

В корпусе реактора происходит разделение смеси, барабан-сепаратор отсутствует. Внутренняя энергия теплоносителя, запасенная в реакторе, переходит в механическую энергию вращения вала турбины, (рабочее тело существенно увеличивает свой объем). Все оборудование контура подвержено радиоактивному загрязнению, что усложняет как эксплуатацию, так и проведение ремонтных работ .

По одноконтурной схеме работает реактор РБМК (канальный реактор)

Рис.2.2. Тепловая схема реактора РБМК.

1- технологический канал реактора с кипящим теплоносителем; 2 – паровая турбина; 3 – генератор; 4 – конденсатор; 5 – питательный насос;6 – циркуляционный насос;7 – барабан-сепаратор.

Если контур ТН и рабочее тело разделены, то такая АЭС называется двухконтурной.

Если парообразование в первом контуре отсутствует, необходим 2 элемент, который служит устройством для компенсации объема расширяющегося рабочего тела, находящегося в жидкой фазе. С точки зрения радиационного облучения персонала второй контур можно считать безопасным.

Если в первом и во втором контуре в качестве теплоносителя используется легкая вода, то необходимо удовлетворить следующие условия.

Температура теплоносителя в первом контуре выше температуры рабочего тела второго контура Т1> Т2 , и соответственно давление Р1>Р2 . Так для водо- водяного реактора ВВЭР-1000 эти параметры примерно составляют–Т1 =320 , Т2 =289 ; Р1 =16 МПа, Р2 =7 МПа, чем обеспечиваются условия для реализации активного парообразования во втором контуре при отсутствии такового в первом.

С точки зрения капитальных затрат одноконтурные и двухконтурные реакторы одинаковой мощности имеют примерно паритет. Это объясняется необходимостью изготавливать технологический контур в первом варианте из дорогостоящих коррозионно-стойких материалов. Однако себестоимость электрической энергии для одноконтурной АЭС оказывается несколько ниже чем для двухконтурной.

Рис. 2.3. Тепловая схема двухконтурной АЭС.

1 – реактор с не кипящим теплоносителем; 2 – компенсатор объема; 3 – парогенератор (ПГ), где энергия теплоносителя первого контура превращается в энергию парообразования во втором контуре (в первом контуре теплоноситель, во втором контуре – рабочее тело); 4 – паровая турбина; 5 – генератор; 6 – конденсатор; 7 – конденсатный насос; 8 – циркуляционный насос; I к. – первый контур; II к. – второй контур.

Существует неполная двухконтурная схема (1 – 2 блоки БАЭС).

Рис. 2.4 Тепловая схема 1-го и 2-го блоков БАЭС.

1 – реактор с кипящим теплоносителем; 2 – паровая турбина; 3 – генератор; 4 – конденсатор; 5 – конденсаторный насос; 6 – циркуляционный насос; 7 – парогенератор (ПГ); 8 – барабан-сепаратор; 9 - пароперегревательный канал (ППК); 10 – испарительный канал (ИК).

Существенное отличие данной схемы от ниже рассмотренной заключается в том, что пар второго контура (как же и теплоноситель первого контура) направляется в пароперегревательные каналы, в которых реализуются условия ППК, в ИК вода кипит, в барабан сепараторе – разделяется. Трехконтурная АЭС. БН-– аналогично.

2.2.Основное технологическое оборудование.

По отдельным стадиям технологического процесса все оборудование подразделяют на реакторную, парогенераторную, паротурбинную, конденсатную установки, питательный тракт.

Рассмотрим упрощенную схему двухконтурной АЭС. Как для одноконтурной, так и для двухконтурной АЭС с водным теплоносителем начальный перегрев пара весьма незначителен. Следовательно, в турбину поступает пар практически на линии насыщения, где при расширении и снижении температуры он быстро увлажняется. Во избежание интенсивного износа лопаточного аппарата турбины. предельное значение допустимой влажности пара в турбине составляет 10÷12%. С этой целью турбину разделяют на цилиндры высокого, среднего и низкого давления, между которыми устанавливаются устройства, где либо от паровой фазы отделяется жидкая фаза – сепараторы, либо подводом тепла переводят жидкость в пар - подогреватели.

Рис.2.5. Тепловая схема ЯЭУ.

1-реакторная установка; 2-компенсатор объема; 3-парогенератор; 4-цилиндр турбины высокого давления; 5--цилиндр турбины низкого давления; 6-электрогенератор; 7-сепаратор пара; 8-конденсатор; 9-конденсационный насос; 10-конденсационная очистка (фильтр); 11-подогреватели низкого давления (ПНД); 12-диаэраторная колонка; 13-диаэраторный бак; 14-питательный насос; 15-подогреватели высокого давления (ПВД); 16-сетевой подогреватель; 17- ГЦН; 18-сетевой насос.

Таким образом, основными технологическими звеньями энергоблока атомной установки являются: реактор, парогенератор, турбина-генератор, конденсатная установка, диэраторная установка, питательный тракт (насосы, баки), ПВД и ПНД, питательные конденсатные насосы, ГЦН.

2.3 Организация термодинамического цикла.

Регенерация. КПД.

Применение законов термодинамики для реактора позволяет записать:

(2.1)

Разнообразие существующих типов ядерных реакторов, теплоносителей и энергетического оборудования обуславливает разнообразие термодинамических циклов - совокупности взаимных рабочих процессов, происходящих в энергетической системе в виде взаимных контуров АЭС. Термодинамический цикл влияет на экономичность АЭС, обуславливает выбор схемы и основных параметров энергетической установки. Основным показателем термодинамического цикла служит термический КПД (или КПД цикла Ренкина) – это отношение теоретической работы цикла к количеству теплоты, подведенной к рабочему телу.

Теоретическая работа цикла:

где https://pandia.ru/text/78/252/images/image062_12.gif" width="36" height="27 src="> - теоретическая работа расширения без учета потерь; - коэффициент, учитывающий необратимость процесса расширения; аналогично

. (2.3)

Рис.2.6. Схема простейшего термодинамического цикла в TS -координатах.

Из этой диаграммы следует:

1 - начало процесса сжатия рабочего тела

1-2 – адиабатическое сжатие рабочего тела с ростом внутренней энергии;

2-3 -отбор тепловой энергии от нагревателя, площадь фигуры 23S2S1 – пропорциональная подводимому теплу;

3-4 – адиабатическое расширение рабочего тела за счет уменьшения внутренней энергии;

4-1 -отвод тепловой энергии в холодильнике, площадь фигуры 14S2S1 – пропорциональная отводимому теплу Q2 ,

Lцт - теоретическая работа цикла.

(2.4)

Отсюда следует

(2.5)

Или в сокращенном виде

(2.6)

Рис.2.7. Схема простейшей паротурбинной установки.

1-парогенератор; 2- турбогенератор; 3- конденсатор; 4- главный циркуляционный насос.

Для турбины, работающей на насыщенном паре КПД цикла Карно можно представить в виде

(2.7)

где iк, iпв – энтальпия воды на выходе из конденсатора и после насоса соответственно, кДж/кг; i0 , - энтальпия пара перед турбиной и на входе в конденсатор при адиабатическом расширении в турбине, кДж/кг.

Выражение (2.7) можно представить в виде

. (2.8)

На Рис.2.8 изображен рабочий процесс расширения пара в турбине на T-S диаграмме, из которой можно отметить, что разность i0 - в уравнении (2.8) представляет собой располагаемый (адиабатный) перепад энтальпии в турбине (работа расширения). Разность энтальпий iпв-ik в рассматриваемых условиях выражает затраты энергии в насосе, отнесенные к 1 кг воды при ее адиабатическом сжатии (работа сжатия). Если учесть неадиабатичность расширения пара в турбине, то энтальпия пара на выходе из турбины возрастет и примет значение , что на Рис. 2.12 соответствует точке 6. На это увеличение энтальпии возрастет количество тепла, передаваемое на 1 кг пара охлаждающей воде в конденсаторе.

В первом приближении вторым слагаемым в числиможно пренебречь, так как в реальных установках затраты на сжатие водного теплоносителя составляют ~1% от работы расширения. Тогда КПД цикла Ренкина можно записать в упрощенном виде:

где i1 - i2 - перепад энтальпий на турбине, i3 –удельная энтальпия воды на выходе из конденсатора.

Рис.2.8. Термодинамический цикл Ренкина для простейшей паротурбинной установки при работе на насыщенном паре.

Из приведенной диаграммы Рис. 2.8 видно, что термический КПД определяют две адиабаты и две изобары, в то же время КПД цикла Карно зависит от двух адиабат и двух изотерм. КПД цикла Карно всегда больше КПД термического цикла так как

Важно отметить, что величина термического КПД для современных энергетических блоков составляет 30-40 %, или, другими словами, площади фигур 123451 и S112345S4 на Рис.2.8 в реальном масштабе имеют точно такое соотношение.

Способы повышения термического КПД.

· Повышать давление, следовательно, парообразование будет реализовываться при больших температурах.

· В конденсатор подавать более холодную воду для более сильного охлаждения рабочего тела.

2.4 Выбор теплофизических параметров для получения максимального термического КПД

Рассмотрим влияние теплофизических параметров рабочего тела на входе в турбину (точка 4 Рис.2.8). Из справочных данных можно построить графические зависимости удельной энтальпии как функции удельной энтропии при разных давлениях теплоносителя в точке 4 термодинамического цикла, который будет иметь следующий вид:

Рис.2.9. Графический вид зависимости теплосодержания от энтропии.

Давление в конденсаторе; https://pandia.ru/text/78/252/images/image080_13.gif" width="23 height=24" height="24">.gif" width="29" height="31 src=">.jpg" width="584" height="752">

Рис.2.10. Схема организации регенеративного цикла.

, , , – доли пара в отборах соответствующих цилиндров; https://pandia.ru/text/78/252/images/image089_12.gif" width="13" height="24 src=">.gif" width="20" height="24 src="> - доля пара, попадающая в конденсатор; 8, 9, 10 – три теплообменника для подогрева рабочего тела. 1–7?

Рис.2.11. Теплофизика ЯЭУ с организацией регенерации тепла.

Анализируя график зависимости Т(S) можно видеть, что в реальном масштабе переменных Т и S площадь фигуры 5’4C4’5’ будет соответствовать уменьшению числителя в определении термического КПД, однако и знаменатель этой формулы уменьшится на величину существенно большей площади фигуры 5”5"4"4”5” . Из рисунка видно, что КПД цикла Ренкина при организации регенеративного отбора будет значительно большим, чем при работе в безотборном режиме. Но в данной схеме необходимо всегда собдюдать условие, площадь фигуры S34’4”5”5’3 (количество тепла всех отборов) должна быть меньше площади фигуры (отбор тепла для нагрева рабочего тела до насыщения), так как в противном случае в теплообменниках регенеративных подогревателей будут идти процессы кипения, а значит, мы лишимся отбора тепла за счет теплоты парообразования в самом реакторе или парогенераторе.

В этом варианте термический КПД может быть представлен в следующей форме:

(2.11)

Где https://pandia.ru/text/78/252/images/image095_11.gif" width="77 height=45" height="45">, можно записать

Следовательно, всегда выполняется условие:

При бесконечном числе отборов КПД Карно и термический КПД равны, что является мощным способом увеличения реального КПД. Использование регенеративных подогревателей ведет к увеличению температуры питательной воды на входе в парогенератор. Термический КПД определяется интегралом от средней температуры при нагреве теплоносителя. Необходимо найти оптимальное соотношение числителя и знаменателя термического КПД для любого числа отборов. Исходя из паспортных данных турбины, задаваясь температурой и давлением теплоносителя на выходах из регенеративных подогревателей можно по справочнику найти энтальпии теплоносителя в данных условиях. Составляя уравнения материального и теплового баланса для сборника конденсата можно рассчитать КПД такого устройства.

Рис. 2.12. График зависимости роста КПД от температуры питательной воды и числа отборов.

При бесконечном числе отборов нет максимума на зависимости термического КПД от температуры питательной воды. Анализ показывает, что организация оптимального трехотборного режима увеличивает термический КПД более чем на 10%, что в обычных условиях потребовало бы увеличения давления в конденсаторе с 30 до 60 атм. При температуре Т =3500С, что в существенной мере упрощает проблему прочности реактора.

2.6 Внутренний КПД турбины.

Термический КПД оценивает эффективность идеального преобразования (адиабатного) перепада энтальпии. В реальных условиях рабочего процесса за счет трения пара, в проточной части турбины, увеличивается энтропию на выходе из турбины на величину S6-S1 (точка 6 на Рис.2.8). Очевидно, что на такое же значение возрастет количество тепла, передаваемое охлаждающей воде, рассчитанные на 1 кг пара. Важно отметить, что в данном случае мы имеем ситуацию уменьшению термического КПД за счет существенного увеличения сброса тепла в конденсатор при незначительном росте его полезного использования. Отношение адиабатного перепада энтальпии в идеальной турбине к реальному перепаду (характеризует совершенство проточной ее части) называют внутренним относительным КПД турбины, который определяют следующим образом:

. (2.13)

Обычно MsoFooter" style="border-collapse: collapse;border:none">

2.7 Коэффициент полезного действия АЭС

Мы рассматривали , который характеризует механическое преобразование тепловой энергии в электрическую, однако, для АЭС больший интерес представляет общий КПД «брутто» и «чистый» КПД – «нетто». «Брутто» характеризует совершенство преобразования ядерной энергетической установкой энергии реактора в электрическую энергию. «Нетто» же учитывает расходы электрической энергии на собственные нужды и оценивает теплотехническую и экономическую надежность станции.

Атомная электростанция

А́томная электроста́нция

(АЭС), электростанция, на которой ядерная преобразуется в электрическую. Первичным источником энергии на АЭС служит ядерный реактор , в котором протекает управляемая цепная реакция деления ядер некоторых тяжёлых элементов. Выделяющаяся при этом теплота преобразуется в электрическую энергию, как правило, так же, как на обычных тепловых электростанциях (ТЭС). Ядерный реактор работает на ядерном топливе, в основном на уране-235, уране-233 и плутонии-239. При делении 1 г изотопов урана или плутония выделяется 22.5 тыс. кВт·ч энергии, что соответствует сжиганию почти 3 т условного топлива.

Первая в мире опытно-промышленная АЭС мощностью 5 МВт была построена в 1954 г. в России в г. Обнинске. За рубежом первая АЭС промышленного назначения мощностью 46 МВт была введена в эксплуатацию в 1956 г. в Колдер-Холле (Великобритания). К кон. 20 в. в мире действовало св. 430 энергетических ядерных реакторов общей электрической мощностью ок. 370 тыс. МВт (в т. ч. в России – 21.3 тыс. МВт). Приблизительно одна треть этих реакторов работает в США, более чем по 10 действующих реакторов имеют Япония, Германия, Канада, Швеция, Россия, Франция и др.; единичные ядерные реакторы – многие другие страны (Пакистан, Индия, Израиль и т. д.). На АЭС вырабатывается ок. 15 % всей производимой в мире электроэнергии.

Основными причинами быстрого развития АЭС являются ограниченность запасов органического топлива, рост потребления нефти и газа для транспортных, промышленных и коммунальных нужд, а также рост цен на невозобновляемые источники энергии. Подавляющее большинство действующих АЭС имеют реакторы на тепловых нейтронах: водо-водяные (с обычной водой в качестве и замедлителя нейтронов, теплоносителя); графитоводные (замедлитель – графит, теплоноситель – вода); графитогазовые (замедлитель – графит, теплоноситель – газ); тяжеловодные (замедлитель – тяжёлая вода, теплоноситель – обычная вода). В России строят гл. обр. графитоводные и водо-водяные реакторы, на АЭС США применяют в основном водо-водяные, в Англии – графитогазовые, в Канаде преобладают АЭС с тяжеловодными реакторами. Кпд АЭС несколько меньше, чем кпд ТЭС на органическом топливе; общий кпд АЭС с водо-водяным реактором составляет ок. 33 %, а с тяжеловодным реактором – ок. 29 %. Однако графитоводные реакторы с перегревом пара в реакторе имеют кпд, приближающийся к 40 %, что сопоставимо с кпд ТЭС. Зато АЭС, по существу, не имеет транспортных проблем: напр., АЭС мощностью 1000 МВт потребляет за год всего 100 т ядерного топлива, а аналогичной мощности ТЭС – ок. 4 млн. т угля. Самым большим недостатком реакторов на тепловых нейтронах является очень низкая эффективность использования природного урана – ок. 1 %. Коэффициент использования урана в реакторах на быстрых нейтронах гораздо выше – до 60–70 %. Это позволяет использовать делящиеся материалы с гораздо меньшим содержанием урана, даже морскую воду. Однако быстрые реакторы требуют большого количества делящегося плутония, который извлекается из выгоревших тепловыделяющих элементов при переработке отработанного ядерного топлива, что достаточно дорого и сложно.

Все реакторы АЭС снабжаются теплообменниками; насосами или газодувными установками для циркуляции теплоносителя; трубопроводами и арматурой циркуляционного контура; устройствами для перезагрузки ядерного топлива; системами специальной вентиляции, сигнализации аварийной обстановки и др. Это оборудование, как правило, находится в отсеках, отделённых от других помещений АЭС биологической защитой. Оборудование машинного зала АЭС примерно соответствует оборудованию паротурбинной ТЭС. Экономические показатели АЭС зависят от кпд реактора и другого энергетического оборудования, коэффициента использования установленной мощности за год, энергонапряжённости активной зоны реактора и т. д. Доля топливной составляющей в себестоимости вырабатываемой электроэнергии АЭС – всего 30–40 % (на ТЭС 60–70 %). Наряду с выработкой электроэнергии АЭС используются также для опреснения воды (Шевченковская АЭС в Казахстане).

Энциклопедия «Техника». - М.: Росмэн . 2006 .


Синонимы :

Смотреть что такое "атомная электростанция" в других словарях:

    Электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую энергию. Генератором энергии на АЭС является атомный реактор. Синонимы: АЭС См. также: Атомные электростанции Электростанции Ядерные реакторы Финансовый словарь… … Финансовый словарь

    - (АЭС) электростанция, на которой ядерная (атомная) энергия преобразуется в электрическую. На АЭС тепло, выделяющееся в ядерном реакторе, используется для получения водного пара, вращающего турбогенератор. 1 я в мире АЭС мощнностью 5 МВт была… … Большой Энциклопедический словарь

    Электростанция, на которой ядерная (атомная) энергия преобразуется в электрическую, где тепло, выделяющееся в ядерном ректоре за счет деления атомных ядер, используется для получения водяного пара, вращающего турбогенератор. EdwART. Словарь… … Словарь черезвычайных ситуаций

    атомная электростанция - Электростанция, преобразующая энергию деления ядер атомов в электрическую энергию или в электрическую энергию и тепло. [ГОСТ 19431 84] Тематики атомная энергетика в целом Синонимы АЭС EN atomic power plantatomic power stationNGSNPGSNPPNPSnuclear… … Справочник технического переводчика

    атомная электростанция - Электростанция, на которой атомная (ядерная) энергия преобразуется в электрическую. Syn.: АЭС … Словарь по географии

    - (АЭС) Nuclear Power Plant атомная станция, предназначенная для производства электроэнергии. Термины атомной энергетики. Концерн Росэнергоатом, 2010 … Термины атомной энергетики

    Сущ., кол во синонимов: 4 атомный гигант (4) аэс (6) мирный атом (4) … Словарь синонимов

    См. также: Список АЭС мира Страны с атомными электростанциями … Википедия

    - (АЭС) электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую. Генератором энергии на АЭС является атомный реактор (см. Ядерный реактор). Тепло, которое выделяется в реакторе в результате цепной реакции деления… … Большая советская энциклопедия

    - (АЭС), электростанция, на которой атомная (ядерная) энергия преобразуется в электрическую. На АЭС тепло, выделяющееся в ядерном реакторе, используется для получения водяного пара, вращающего турбогенератор. В качестве ядерного горючего в составе… … Географическая энциклопедия

    - (АЭС) электростанция, в к рой атомная (ядерная) энергия преобразуется в электрическую. На АЭС теплота, выделяющаяся в ядерном реакторе в результате цепной реакции деления ядер нек рых тяжёлых элементов, в осн. 233U, 235U, 239Рu, преобразуется в… … Большой энциклопедический политехнический словарь

Книги

  • Записки строителя , А. Н. Комаровский , Воспоминания Героя Социалистического Труда, лауреата Ленинской и Государственной премий, доктора технических наук, профессора, генерал-полковника-инженера Александра Николаевича Комаровского… Категория: Градостроительство и архитектура Издатель:

86. Определить длину волны де-Бройля электронов, при бомбардировке которыми невозбужденных атомов водорода в их спектре появились две линии в первой инфракрасной серии.

87. Фотон с энергией 3 МэВ в поле тяжелого ядра превратился в пару электрон-позитрон. Если скорости этих частиц одинаковы, то какова их кинетическая энергия в МэВ? ().

88. Найти массу урана-238, имеющего такую же активность, как и стронций-90 массой 1 мг. Периоды полураспада урана и стронция соответственно 4·10 9 и 28 лет.

90 =96 . Атомная электростанция, имеющая КПД 25% расходует в сутки 235 г урана-235. Определите мощность станции, если при делении одного ядра урана выделяется
Дж энергии.

91 =95 . КПД атомной электростанции 20%. При делении одного ядра
выделяется 200 МэВ энергии. Сколько урана расходуется за 1 час работы электростанции мощностью 10 6 Вт.

92. Счетчик Гейгера, установленный вблизи препарата радиоактивного изотопа серебра регистрирует поток -частиц. При первом измерении поток Ф 1 частиц был равен 87 с -1 , а по истечении времени t = 1 сут поток Ф 2 оказался равным 22 с -1 . Определить период полураспада Т 1/2 изотопа.

93. Определить удельную энергию связи изотопа кислорода
. (масса нейтрона 1,00867a.e.м. , масса атома водорода 1,00783 a.e.м. , масса атома кислорода 16, 99913 a.e.м.). (МэВ).

94 . Определить суточный расход чистого урана
атомной электростанцией тепловой мощностьюР = 300 МВт, если энергия Е , выделяющаяся при одном акте деления ядра урана составляет 200 МэВ.

97 . КПД атомной электростанции мощностью 5000 кВт – 17%. При делении одного ядра
выделяется энергия 200 МэВ. Какое количество урана (г) расходует электростанция за сутки? (
).

99. Определить число атомов, распадающихся в радиоактивном изотопе за время t = 1 c, если его активность А = 0,1 МБк. Считать активность постоянной в течение указанного времени.

Публикации по теме